A comparative evaluation of β-catenin and plakoglobin signaling activity

[1]  Michael Shtutman,et al.  Differential Mechanisms of LEF/TCF Family-Dependent Transcriptional Activation by β-Catenin and Plakoglobin , 2000, Molecular and Cellular Biology.

[2]  A. Ciechanover,et al.  Differential interaction of plakoglobin and β-catenin with the ubiquitin-proteasome system , 2000, Oncogene.

[3]  D. M. Ferkey,et al.  Interaction among Gsk-3, Gbp, Axin, and APC in Xenopus Axis Specification , 2000, The Journal of cell biology.

[4]  Carmen Birchmeier,et al.  Requirement for beta-catenin in anterior-posterior axis formation in mice. , 2000 .

[5]  S. Hirohashi,et al.  β‐Catenin Accumulation and Mutation of Exon 3 of the β‐Catenin Gene in Hepatocellular Carcinoma , 1999, Japanese journal of cancer research : Gann.

[6]  M. Matsuda,et al.  β-Catenin Mutations Are Frequent in Human Hepatocellular Carcinomas Associated with Hepatitis C Virus Infection , 1999 .

[7]  A. Kikuchi,et al.  Roles of Axin in the Wnt signalling pathway. , 1999, Cellular signalling.

[8]  H. Varmus,et al.  Membrane-anchored plakoglobins have multiple mechanisms of action in Wnt signaling. , 1999, Molecular biology of the cell.

[9]  Satoshi Ikeda,et al.  Axin Directly Interacts with Plakoglobin and Regulates Its Stability* , 1999, The Journal of Biological Chemistry.

[10]  A. Kikuchi,et al.  Modulation of Wnt signaling by Axin and Axil. , 1999, Cytokine & growth factor reviews.

[11]  M. Buendia,et al.  Nuclear accumulation of mutated beta-catenin in hepatocellular carcinoma is associated with increased cell proliferation. , 1999, The American journal of pathology.

[12]  Doris Wedlich,et al.  The Wnt/Wg Signal Transducer β-Catenin Controls Fibronectin Expression , 1999, Molecular and Cellular Biology.

[13]  Jan Bayer,et al.  Beta-catenin mutations in hepatocellular carcinoma correlate with a low rate of loss of heterozygosity , 1999, Oncogene.

[14]  Andreas Hecht,et al.  Functional Characterization of Multiple Transactivating Elements in β-Catenin, Some of Which Interact with the TATA-binding Proteinin Vitro * , 1999, The Journal of Biological Chemistry.

[15]  Bruce A. Yankner,et al.  β-Trcp couples β-catenin phosphorylation-degradation and regulates Xenopus axis formation , 1999 .

[16]  C. Kaufmann,et al.  Domains of Axin Involved in Protein–Protein Interactions, Wnt Pathway Inhibition, and Intracellular Localization , 1999, The Journal of cell biology.

[17]  T. Dale,et al.  Interaction of Axin and Dvl‐2 proteins regulates Dvl‐2‐stimulated TCF‐dependent transcription , 1999, The EMBO journal.

[18]  Paul Polakis,et al.  The metalloproteinase matrilysin is a target of β-catenin transactivation in intestinal tumors , 1999, Oncogene.

[19]  M. Kitagawa,et al.  An F‐box protein, FWD1, mediates ubiquitin‐dependent proteolysis of β‐catenin , 1999, The EMBO journal.

[20]  Y. Tokusashi,et al.  Beta-catenin mutations are frequent in hepatocellular carcinomas but absent in adenomas induced by diethylnitrosamine in B6C3F1 mice. , 1999, Cancer research.

[21]  Elaine Fuchs,et al.  A common human skin tumour is caused by activating mutations in β-catenin , 1999, Nature Genetics.

[22]  N. Imamoto,et al.  beta-catenin can be transported into the nucleus in a Ran-unassisted manner. , 1999, Molecular biology of the cell.

[23]  Frank McCormick,et al.  β-Catenin regulates expression of cyclin D1 in colon carcinoma cells , 1999, Nature.

[24]  R. Benarous,et al.  The F-box protein β-TrCP associates with phosphorylated β-catenin and regulates its activity in the cell , 1999, Current Biology.

[25]  Paul Polakis,et al.  The oncogenic activation of β-catenin , 1999 .

[26]  Stephen J. Elledge,et al.  The SCFβ-TRCP–ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IκBα and β-catenin and stimulates IκBα ubiquitination in vitro , 1999 .

[27]  M. Pagano,et al.  The human F box protein β-Trcp associates with the Cul1/Skp1 complex and regulates the stability of β-catenin , 1999, Oncogene.

[28]  A. Sparks,et al.  Identification of c-MYC as a target of the APC pathway. , 1998, Science.

[29]  Y. Marikawa,et al.  β-TrCP is a negative regulator of the Wnt/β-catenin signaling pathway and dorsal axis formation in Xenopus embryos , 1998, Mechanisms of Development.

[30]  Rudolf Grosschedl,et al.  Modulation of Transcriptional Regulation by LEF-1 in Response to Wnt-1 Signaling and Association with β-Catenin , 1998, Molecular and Cellular Biology.

[31]  Benjamin Geiger,et al.  Differential Nuclear Translocation and Transactivation Potential of β-Catenin and Plakoglobin , 1998, The Journal of cell biology.

[32]  G. Walz,et al.  Wnt signaling and transcriptional control of Siamois in Xenopus embryos. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Paul Polakis,et al.  Downregulation of β-catenin by human Axin and its association with the APC tumor suppressor, β-catenin and GSK3β , 1998, Current Biology.

[34]  Akira Kikuchi,et al.  Axil, a Member of the Axin Family, Interacts with Both Glycogen Synthase Kinase 3β and β-Catenin and Inhibits Axis Formation ofXenopus Embryos , 1998, Molecular and Cellular Biology.

[35]  W. Birchmeier,et al.  Functional interaction of an axin homolog, conductin, with beta-catenin, APC, and GSK3beta. , 1998, Science.

[36]  J. Izbicki,et al.  Reduced expression of plakoglobin indicates an unfavorable prognosis in subsets of patients with non-small-cell lung cancer. , 1998, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[37]  L. Williams,et al.  Bridging of β-catenin and glycogen synthase kinase-3β by Axin and inhibition of β-catenin-mediated transcription , 1998 .

[38]  Bert Vogelstein,et al.  Mutational Analysis of the APC/β-Catenin/Tcf Pathway in Colorectal Cancer , 1998 .

[39]  Akira Kikuchi,et al.  Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK‐3β and β‐catenin and promotes GSK‐3β‐dependent phosphorylation of β‐catenin , 1998 .

[40]  D. Thomas,et al.  A novel human WD protein, h-beta TrCp, that interacts with HIV-1 Vpu connects CD4 to the ER degradation pathway through an F-box motif. , 1998, Molecular cell.

[41]  B. Gumbiner,et al.  Nuclear localization signal-independent and importin/karyopherin-independent nuclear import of β-catenin , 1998, Current Biology.

[42]  G. Struhl,et al.  Regulation of the Hedgehog and Wingless signalling pathways by the F-box/WD40-repeat protein Slimb , 1998, Nature.

[43]  T. Dale,et al.  Signal transduction by the Wnt family of ligands. , 1998, The Biochemical journal.

[44]  H. Aberle,et al.  Signaling and Adhesion Activities of Mammalian β-Catenin and Plakoglobin in Drosophila , 1998, The Journal of cell biology.

[45]  R. Grosschedl,et al.  LEF-1/TCF proteins mediate wnt-inducible transcription from the Xenopus nodal-related 3 promoter. , 1997, Developmental biology.

[46]  E. Schwarz,et al.  Reduced gene expression of E-cadherin and associated catenins in human cervical carcinoma cell lines. , 1997, Cancer letters.

[47]  M. Waterman,et al.  Induction of a β-catenin-LEF-1 complex by wnt-1 and transforming mutants of β-catenin , 1997, Oncogene.

[48]  D. Kessler,et al.  Siamois is required for formation of Spemann's organizer. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[49]  R. Moon,et al.  Analysis of the Signaling Activities of Localization Mutants of β-Catenin during Axis Specification in Xenopus , 1997, The Journal of cell biology.

[50]  W. Nelson,et al.  Cadherins, catenins and APC protein: interplay between cytoskeletal complexes and signaling pathways. , 1997, Current opinion in cell biology.

[51]  R. Moon,et al.  A beta-catenin/XTcf-3 complex binds to the siamois promoter to regulate dorsal axis specification in Xenopus. , 1997, Genes & development.

[52]  William I. Weis,et al.  Three-Dimensional Structure of the Armadillo Repeat Region of β-Catenin , 1997, Cell.

[53]  Wei Hsu,et al.  The Mouse Fused Locus Encodes Axin, an Inhibitor of the Wnt Signaling Pathway That Regulates Embryonic Axis Formation , 1997, Cell.

[54]  Paul Polakis,et al.  Stabilization of β-Catenin by Genetic Defects in Melanoma Cell Lines , 1997, Science.

[55]  Hans Clevers,et al.  Armadillo Coactivates Transcription Driven by the Product of the Drosophila Segment Polarity Gene dTCF , 1997, Cell.

[56]  P. McCrea,et al.  beta-Catenin associates with the actin-bundling protein fascin in a noncadherin complex , 1996, The Journal of cell biology.

[57]  B. Herrmann,et al.  Nuclear localization of β-catenin by interaction with transcription factor LEF-1 , 1996, Mechanisms of Development.

[58]  J. Woodgett,et al.  Wingless inactivates glycogen synthase kinase‐3 via an intracellular signalling pathway which involves a protein kinase C. , 1996, The EMBO journal.

[59]  S. Orsulic,et al.  An in vivo structure-function study of armadillo, the beta-catenin homologue, reveals both separate and overlapping regions of the protein required for cell adhesion and for wingless signaling , 1996, The Journal of cell biology.

[60]  Michael Kühl,et al.  Functional interaction of β-catenin with the transcription factor LEF-1 , 1996, Nature.

[61]  Hans Clevers,et al.  XTcf-3 Transcription Factor Mediates β-Catenin-Induced Axis Formation in Xenopus Embryos , 1996, Cell.

[62]  P. Polakis,et al.  Deletion of an amino-terminal sequence beta-catenin in vivo and promotes hyperphosporylation of the adenomatous polyposis coli tumor suppressor protein , 1996, Molecular and cellular biology.

[63]  H. Aberle,et al.  Cadherin‐catenin complex: Protein interactions and their implications for cadherin function , 1996, Journal of cellular biochemistry.

[64]  R. Moon,et al.  The axis-inducing activity, stability, and subcellular distribution of beta-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. , 1996, Genes & development.

[65]  B. Gumbiner,et al.  Desmosomal Cadherin Binding Domains of Plakoglobin (*) , 1996, The Journal of Biological Chemistry.

[66]  P. Polakis,et al.  Wnt-1 regulates free pools of catenins and stabilizes APC-catenin complexes , 1996, Molecular and cellular biology.

[67]  B. Geiger,et al.  Suppression of tumorigenicity by plakoglobin: an augmenting effect of N- cadherin , 1996, The Journal of cell biology.

[68]  H. Lynch,et al.  The human plakoglobin gene localizes on chromosome 17q21 and is subjected to loss of heterozygosity in breast and ovarian cancers. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[69]  P. Crespo,et al.  The small GTP-binding proteins Rac1 and Cdc42regulate the activity of the JNK/SAPK signaling pathway , 1995, Cell.

[70]  F. Masiarz,et al.  Association of the APC gene product with beta-catenin. , 1993, Science.

[71]  K. Kinzler,et al.  Association of the APC tumor suppressor protein with catenins. , 1993, Science.

[72]  H. Clevers,et al.  The Yin-Yang of TCF/beta-catenin signaling. , 2000, Advances in cancer research.

[73]  K. Green,et al.  Desmosomes: intercellular adhesive junctions specialized for attachment of intermediate filaments. , 1999, International review of cytology.

[74]  M. Klymkowsky,et al.  Localizing the adhesive and signaling functions of plakoglobin. , 1997, Developmental genetics.

[75]  M. Klymkowsky,et al.  Cytoskeletal-membrane interactions and signal transduction , 1997 .