Auslander–Reiten–Serre duality for n-exangulated categories

Let (C ,E, s) be an Ext-finite, Krull-Schmidt and k-linear n-exangulated category with k a commutative artinian ring. In this note, we prove that C has Auslander-ReitenSerre duality if and only if C has Auslander-Reiten n-exangles. Moreover, we also give an equivalent condition for the existence of Serre duality (which is a special type of AuslanderReiten-Serre duality). Finally, assume further that C has Auslander-Reiten-Serre duality. We exploit a bijection triangle, which involves the restricted Auslander bijection and the Auslander-Reiten-Serre duality.

[1]  M. Auslander,et al.  Almost split sequences in subcategories , 1981 .

[2]  G. Jasso,et al.  n-Abelian and n-exact categories , 2014, 1405.7805.

[3]  Panyue Zhou,et al.  Two new classes of n-exangulated categories , 2021, Journal of Algebra.

[4]  Idun Reiten,et al.  Noetherian hereditary abelian categories satisfying Serre duality , 2002 .

[5]  H. Nakaoka,et al.  n-exangulated categories (I): Definitions and fundamental properties , 2020 .

[6]  Dieter Happel,et al.  Triangulated categories in the representation theory of finite dimensional algebras , 1988 .

[7]  H. Krause Morphisms Determined by Objects in Triangulated Categories , 2011, 1110.5625.

[8]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[9]  Yann Palu,et al.  Extriangulated categories, Hovey twin cotorsion pairs and model structures , 2019 .

[10]  Xiao-Wu Chen,et al.  A note on morphisms determined by objects , 2013, 1311.1854.

[11]  I. Reiten,et al.  Representation theory of artin algebras iii almost split sequences , 1975 .

[12]  Xiao-Wu Chen The Auslander bijections and universal extensions , 2013, 1312.6560.

[13]  Panyue Zhou,et al.  $n$-exact categories arising from $n$-exangulated categories , 2021, 2109.12954.

[14]  I. Reiten,et al.  Representation theory of artin algebras IV1)Invariants given by almost split sequences , 1977 .

[15]  Auslander Maurice,et al.  Representation Theory of Artin Algebras I , 1974 .

[16]  Dongdong Zhang,et al.  On the existence of Auslander-Reiten $n$-exangles in $n$-exangulated categories , 2021 .

[17]  Yann Palu,et al.  Auslander–Reiten theory in extriangulated categories , 2018, Transactions of the American Mathematical Society, Series B.

[18]  Tiwei Zhao,et al.  A bijection triangle in extriangulated categories , 2021, Journal of Algebra.

[19]  Sondre Kvamme,et al.  An introduction to higher Auslander–Reiten theory , 2016, Bulletin of the London Mathematical Society.

[20]  Shiping Liu Auslander-Reiten theory in a Krull-Schmidt category , 2010 .

[21]  Steffen Oppermann,et al.  n-angulated categories , 2010, 1006.4592.

[22]  Panyue Zhou,et al.  Higher Auslander-Reiten sequences via morphisms determined by objects , 2021, Communications in Algebra.

[23]  C. Ringel The Auslander bijections: how morphisms are determined by modules , 2013, 1301.1251.

[24]  Pengjie Jiao The generalized Auslander–Reiten duality on an exact category , 2016, Journal of Algebra and Its Applications.

[25]  Amit Shah Auslander-Reiten theory in quasi-abelian and Krull-Schmidt categories , 2018, Journal of Pure and Applied Algebra.