Estimation of beam material random field properties via sensitivity-based model updating using experimental frequency response functions

Abstract Structural parameter estimation is affected not only by measurement noise but also by unknown uncertainties which are present in the system. Deterministic structural model updating methods minimise the difference between experimentally measured data and computational prediction. Sensitivity-based methods are very efficient in solving structural model updating problems. Material and geometrical parameters of the structure such as Poisson’s ratio, Young’s modulus, mass density, modal damping, etc. are usually considered deterministic and homogeneous. In this paper, the distributed and non-homogeneous characteristics of these parameters are considered in the model updating. The parameters are taken as spatially correlated random fields and are expanded in a spectral Karhunen-Loeve (KL) decomposition. Using the KL expansion, the spectral dynamic stiffness matrix of the beam is expanded as a series in terms of discretized parameters, which can be estimated using sensitivity-based model updating techniques. Numerical and experimental tests involving a beam with distributed bending rigidity and mass density are used to verify the proposed method. This extension of standard model updating procedures can enhance the dynamic description of structural dynamic models.

[1]  Walter D. Pilkey,et al.  Literature review of variants of the dynamic stiffness method. II: Frequency-dependent matrix and other corrective methods , 1993 .

[2]  O. Arda Vanli,et al.  Statistical updating of finite element model with Lamb wave sensing data for damage detection problems , 2014 .

[3]  José Roberto de França Arruda Objective functions for the nonlinear curve fit of frequency response functions , 1992 .

[4]  S. Adhikari Doubly Spectral Stochastic Finite-Element Method for Linear Structural Dynamics , 2011 .

[5]  John E. Mottershead,et al.  The sensitivity method in finite element model updating: A tutorial (vol 25, pg 2275, 2010) , 2011 .

[6]  Aarnout Brombacher,et al.  Probability... , 2009, Qual. Reliab. Eng. Int..

[7]  Mario Paz,et al.  Structural Dynamics: Theory and Computation , 1981 .

[8]  R. Allemang The Modal Assurance Criterion (MAC): Twenty Years of Use and Abuse , 2005 .

[9]  Jon D. Collins,et al.  Statistical Identification of Structures , 1973 .

[10]  J. R. Banerjee,et al.  Exact Bernoulli–Euler dynamic stiffness matrix for a range of tapered beams , 1985 .

[11]  Jm M. Ko,et al.  An improved perturbation method for stochastic finite element model updating , 2008 .

[12]  J. R. Banerjee,et al.  Dynamic stiffness formulation for structural elements: A general approach , 1997 .

[13]  John E. Mottershead,et al.  Model Updating In Structural Dynamics: A Survey , 1993 .

[14]  Christian Soize,et al.  Robust Updating of Uncertain Computational Models Using Experimental Modal Analysis , 2008 .

[15]  L. Meirovitch Principles and techniques of vibrations , 1996 .

[16]  J.E. Mottershead,et al.  Stochastic model updating: Part 2—application to a set of physical structures , 2006 .

[17]  Nuno M. M. Maia,et al.  Theoretical and Experimental Modal Analysis , 1997 .

[18]  J. R. Banerjee,et al.  Coupled bending-torsional dynamic stiffness matrix for timoshenko beam elements , 1992 .

[19]  John E. Mottershead,et al.  Stochastic model updating: Part 1—theory and simulated example , 2006 .

[20]  H. G. Natke Updating computational models in the frequency domain based on measured data: a survey , 1988 .

[21]  John E. Mottershead,et al.  Combining Subset Selection and Parameter Constraints in Model Updating , 1998 .

[22]  D. J. Ewins,et al.  Modal Testing: Theory and Practice , 1984 .

[23]  Hamed Haddad Khodaparast,et al.  Stochastic finite element model updating and its application in aeroelasticity , 2010 .

[24]  J. R. Banerjee,et al.  Coupled bending-torsional dynamic stiffness matrix for axially loaded beam elements , 1992 .

[25]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[26]  Walter D. Pilkey,et al.  Literature Review : Literature Review of Variants of the Dynamic Stiffness Method: Part 2: Frequency-Dependent Matrix and Other Corrective Methods , 1993 .

[27]  U. S. Fernando,et al.  Modern Practice in Stress and Vibration Analysis , 1993 .

[28]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[29]  C. S. Manohar,et al.  Dynamic stiffness of randomly parametered beams , 1998 .

[30]  Christian Soize,et al.  Non-Gaussian simulation using Hermite polynomial expansion: convergences and algorithms , 2002 .

[31]  James F. Doyle,et al.  Wave Propagation in Structures: Spectral Analysis Using Fast Discrete Fourier Transforms , 1997 .

[32]  C. S. Manohar,et al.  Transient Dynamics of Stochastically Parametered Beams , 2000 .

[33]  A. H,et al.  REGULARISATION METHODS FOR FINITE ELEMENT MODEL UPDATING , 1998 .

[34]  Michael Link,et al.  Updating and localizing structural errors based on minimization of equation errors , 1991 .

[35]  Michael Hanss,et al.  Identification procedure for epistemic uncertainties using inverse fuzzy arithmetic , 2010 .

[36]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[37]  H. G. Natke,et al.  On the parameter identification of elastomechanical systems using input and output residuals , 1984 .

[38]  J. Beck,et al.  Updating Models and Their Uncertainties. I: Bayesian Statistical Framework , 1998 .

[39]  John E. Mottershead,et al.  SELECTION AND UPDATING OF PARAMETERS FOR AN ALUMINIUM SPACE-FRAME MODEL , 2000 .

[40]  T. K. Kundra,et al.  PREDICTION OF DYNAMIC CHARACTERISTICS USING UPDATED FINITE ELEMENT MODELS , 2002 .

[41]  Hans Günther Natke,et al.  Einführung in Theorie und Praxis der Zeitreihen- und Modalanalyse , 1983 .

[42]  Hamid Ahmadian,et al.  Generic element matrices suitable for finite element model updating , 1995 .

[43]  Branislav Titurus,et al.  Regularization in model updating , 2008 .

[44]  Pietro Salvini,et al.  Direct updating of non conservative finite element models using measured input-output , 1992 .

[45]  M. Friswell,et al.  Uncertainty identification by the maximum likelihood method , 2005 .

[46]  Michael Link,et al.  UPDATING ANALYTICAL MODELS BY USING LOCAL AND GLOBAL PARAMETERS AND RELAXED OPTIMISATION REQUIREMENTS , 1998 .

[47]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[48]  Sondipon Adhikari,et al.  Distributed parameter model updating using the Karhunen–Loève expansion , 2010 .

[49]  M J.E. GEOMETRIC PARAMETERS FOR FINITE ELEMENT MODEL UPDATING OF JOINTS AND CONSTRAINTS , .

[50]  Ilya M. Sobol,et al.  A Primer for the Monte Carlo Method , 1994 .

[51]  Marc J. Richard,et al.  A NEW DYNAMIC FINITE ELEMENT (DFE) FORMULATION FOR LATERAL FREE VIBRATIONS OF EULER–BERNOULLI SPINNING BEAMS USING TRIGONOMETRIC SHAPE FUNCTIONS , 1999 .

[52]  José Roberto de França Arruda,et al.  Mechanical joint parameter estimation using frequency response functions and component mode synthesis , 1993 .

[53]  Michael Link,et al.  Stochastic model updating—Covariance matrix adjustment from uncertain experimental modal data , 2010 .

[54]  M. Friswell,et al.  Perturbation methods for the estimation of parameter variability in stochastic model updating , 2008 .

[55]  John E. Mottershead,et al.  Modelling and updating of large surface-to-surface joints in the AWE-MACE structure , 2006 .

[56]  John E. Mottershead,et al.  Finite Element Model Updating in Structural Dynamics , 1995 .

[57]  Randall J. Allemang,et al.  A Correlation Coefficient for Modal Vector Analysis , 1982 .

[58]  Roger Ghanem,et al.  Simulation of multi-dimensional non-gaussian non-stationary random fields , 2002 .

[59]  J. Beck,et al.  UPDATING MODELS AND THEIR UNCERTAINTIES. II: MODEL IDENTIFIABILITY. TECHNICAL NOTE , 1998 .

[60]  Michael I. Friswell,et al.  The adjustment of structural parameters using a minimum variance estimator , 1989 .

[61]  M. Friswell,et al.  Finite–element model updating using experimental test data: parametrization and regularization , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[62]  John E. Mottershead,et al.  On the treatment of ill-conditioning in spatial parameter estimation from measured vibration data , 1991 .

[63]  J. Beck,et al.  Bayesian Updating of Structural Models and Reliability using Markov Chain Monte Carlo Simulation , 2002 .

[64]  K. Phoon,et al.  Simulation of strongly non-Gaussian processes using Karhunen–Loeve expansion , 2005 .

[65]  H. Natke,et al.  Die Korrektur des Rechenmodells eines elastomechanischen Systems mittels gemessener erzwungener Schwingungen , 1977 .

[66]  M I Friswell,et al.  USING VIBRATION DATA STATISTICAL MEASURES TO LOCATE DAMAGE IN STRUCTURES , 1994 .

[67]  Marc J. Richard,et al.  Free vibrational analysis of axially loaded bending-torsion coupled beams: a dynamic finite element , 2000 .

[68]  G. Stefanou The stochastic finite element method: Past, present and future , 2009 .

[69]  Walter D. Pilkey,et al.  LITERATURE REVIEW analysis of the shock and vibration literature: Literature Review of Variants of the Dynamic Stiffness Method, Part 1: The Dynamic Element Method , 1993 .

[70]  U. Lee Spectral Element Method in Structural Dynamics , 2009 .

[71]  J. R. Banerjee,et al.  Free vibration of composite beams - An exact method using symbolic computation , 1995 .

[72]  J. Banerjee Coupled bending–torsional dynamic stiffness matrix for beam elements , 1989 .

[73]  Randall J. Allemang,et al.  THE MODAL ASSURANCE CRITERION–TWENTY YEARS OF USE AND ABUSE , 2003 .