Polar Operators for Structured Sparse Estimation

Structured sparse estimation has become an important technique in many areas of data analysis. Unfortunately, these estimators normally create computational difficulties that entail sophisticated algorithms. Our first contribution is to uncover a rich class of structured sparse regularizers whose polar operator can be evaluated efficiently. With such an operator, a simple conditional gradient method can then be developed that, when combined with smoothing and local optimization, significantly reduces training time vs. the state of the art. We also demonstrate a new reduction of polar to proximal maps that enables more efficient latent fused lasso.

[1]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[2]  Editors , 1986, Brain Research Bulletin.

[3]  I. Stancu-Minasian Nonlinear Fractional Programming , 1997 .

[4]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[5]  Yudong D. He,et al.  A Gene-Expression Signature as a Predictor of Survival in Breast Cancer , 2002 .

[6]  Van,et al.  A gene-expression signature as a predictor of survival in breast cancer. , 2002, The New England journal of medicine.

[7]  Yurii Nesterov,et al.  Smooth minimization of non-smooth functions , 2005, Math. Program..

[8]  R. Tibshirani,et al.  Sparsity and smoothness via the fused lasso , 2005 .

[9]  R. Tibshirani,et al.  PATHWISE COORDINATE OPTIMIZATION , 2007, 0708.1485.

[10]  T. Ideker,et al.  Network-based classification of breast cancer metastasis , 2007, Molecular systems biology.

[11]  P. Zhao,et al.  The composite absolute penalties family for grouped and hierarchical variable selection , 2009, 0909.0411.

[12]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[13]  Petros Drineas,et al.  CUR matrix decompositions for improved data analysis , 2009, Proceedings of the National Academy of Sciences.

[14]  Junzhou Huang,et al.  Learning with structured sparsity , 2009, ICML '09.

[15]  Jieping Ye,et al.  An efficient algorithm for a class of fused lasso problems , 2010, KDD.

[16]  Eric P. Xing,et al.  Tree-Guided Group Lasso for Multi-Task Regression with Structured Sparsity , 2009, ICML.

[17]  Francis R. Bach,et al.  Convex Analysis and Optimization with Submodular Functions: a Tutorial , 2010, ArXiv.

[18]  R. Tibshirani,et al.  A fused lasso latent feature model for analyzing multi-sample aCGH data. , 2011, Biostatistics.

[19]  Sara van de Geer,et al.  Statistics for High-Dimensional Data , 2011 .

[20]  Julien Mairal,et al.  Proximal Methods for Hierarchical Sparse Coding , 2010, J. Mach. Learn. Res..

[21]  Sara van de Geer,et al.  Statistics for High-Dimensional Data: Methods, Theory and Applications , 2011 .

[22]  Julien Mairal,et al.  Convex and Network Flow Optimization for Structured Sparsity , 2011, J. Mach. Learn. Res..

[23]  Julien Mairal,et al.  Optimization with Sparsity-Inducing Penalties , 2011, Found. Trends Mach. Learn..

[24]  Pablo A. Parrilo,et al.  The Convex Geometry of Linear Inverse Problems , 2010, Foundations of Computational Mathematics.

[25]  Yaoliang Yu,et al.  Accelerated Training for Matrix-norm Regularization: A Boosting Approach , 2012, NIPS.

[26]  Zaïd Harchaoui,et al.  Lifted coordinate descent for learning with trace-norm regularization , 2012, AISTATS.

[27]  Francis R. Bach,et al.  Convex Relaxation for Combinatorial Penalties , 2012, ArXiv.

[28]  Sören Laue A Hybrid Algorithm for Convex Semidefinite Optimization , 2012, ICML.

[29]  Julien Mairal,et al.  Supervised feature selection in graphs with path coding penalties and network flows , 2012, J. Mach. Learn. Res..

[30]  Bamdev Mishra,et al.  Low-Rank Optimization with Trace Norm Penalty , 2011, SIAM J. Optim..

[31]  Yurii Nesterov,et al.  Gradient methods for minimizing composite functions , 2012, Mathematical Programming.