GAMEDE: A global activity model for evaluating the sustainability of dairy enterprises Part I - Whole-farm dynamic model

 Crop-livestock farms are complex systems. The interactions operating in such systems involve decisional, biophysical, structural, and environmental factors. Moreover, as farmers face a large range of management options, tools are needed to support their decision-making to enable them to reach production levels meeting their objectives and compatible with their human and physical resources, while controlling their effects on the environment. Gamede, a whole-dairy-farm model, has been developed to explore this complexity and to represent dynamically the effect of management decisions on biomass and nitrogen flows and on numerous sustainability indicators, such as milk and forage crop productivity, labour requirements, nitrogen balance, and nitrogen efficiency. This article describes the integration of six modules accounting for biophysical processes in a dairy farm (forage production; forage conditioning; herd demography; milk, excreta and animal biomass productions; grazing, quality of fertilisers; and nitrogen gaseous emissions) together with a decision system accounting for the farmer's strategy and technical operations. Most of the six biophysical modules incorporate mathematical models from the literature, but the decision system stems from our own original work. Six commercial farms with different structures, agro-climatic conditions and management strategies were used for validation. The model can explain the differences found in their sustainability indicators at the year scale. The intra-year variability of the main biomass stocks and flows is also well explained. This quantitative validation was completed by a qualitative validation from researcher, adviser and farmer points of view, including simulations of prospective scenarios.

[1]  M J Cros,et al.  Simulating rotational grazing management. , 2001, Environment international.

[2]  Peter A. Vanrolleghem,et al.  Simulating the influence of management decisions on the nutrient balance of dairy farms , 2005 .

[3]  François Bocquier,et al.  GAMEDE: A global activity model for evaluating the sustainability of dairy enterprises. Part II - Interactive simulation of various management strategies with diverse stakeholders , 2009 .

[4]  T. Misselbrook,et al.  Predicting ammonia losses following the application of livestock manure to land. , 2005, Bioresource technology.

[5]  Alain Capillon,et al.  Decision-making processes for crop management on African farms. Modelling from a case study of cotton crops in northern Cameroon , 2002 .

[6]  H. Sinoquet,et al.  An overview of the crop model STICS , 2003 .

[7]  Paul Robin,et al.  Predicting ammonia and carbon dioxide emissions from carbon and nitrogen biodegradability during animal waste composting , 2005 .

[8]  P. Faverdin,et al.  Prévoir l'ingestion d'herbe et la production des vaches laitières : GrazeIn, un modèle pour raisonner l'alimentation au pâturage , 2004 .

[9]  Benoît Dedieu,et al.  ATELAGE: un modele pour qualifier l'organisation du travail dans les exploitations d'elevage , 2006 .

[10]  Mark A. Sutton,et al.  A simple process‐based model for estimating ammonia emissions from agricultural land after fertilizer applications , 2004 .

[11]  François Guerrin,et al.  Simulation of action in production systems , 2005 .

[12]  Jonathan Vayssières,et al.  Modéliser les pratiques décisionnelles et les flux d'azote à l'échelle globale de l'exploitation : cas de l'élevage bovin laitier en contexte tropical insulaire , 2007 .

[13]  Paul Berentsen,et al.  An environmental-economic model at farm level to analyse institutional and technical change in dairy farming , 1995 .

[14]  Roger Martin-Clouaire,et al.  The human side of agricultural production management - the missing focus in simulation approaches , 2005 .

[15]  K. A. Macdonald,et al.  A whole-farm model applied to a dairy system , 2002 .

[16]  T. Misselbrook,et al.  Effect of turning regime and seasonal weather conditions on nitrogen and phosphorus losses during aerobic composting of cattle manure. , 2004, Bioresource technology.

[17]  François Guerrin Simulation of stock control policies in a two-stage production system: Application to pig slurry management involving multiple farms , 2004 .

[18]  François Guerrin MAGMA: a simulation model to help manage animal wastes at the farm level , 2001 .

[19]  C. Rotz,et al.  Whole-farm perspectives of nutrient flows in grassland agriculture , 2005 .

[20]  Marie-Josée Cros,et al.  A biophysical dairy farm model to evaluate rotational grazing management strategies , 2003 .

[21]  Edward J. Rykiel,et al.  Testing ecological models: the meaning of validation , 1996 .

[22]  E. Tillard,et al.  Precalving factors affecting conception risk in Holstein dairy cows in tropical conditions. , 2007, Theriogenology.

[23]  H. Steinfeld,et al.  Livestock's long shadow: environmental issues and options. , 2006 .

[24]  M. J. McGregor,et al.  Farming systems research/extension: background concepts, experience and networking. , 1994 .

[25]  Véronique Alary,et al.  A dynamic model to analyse the bio-technical and socio-economic interactions in dairy farming systems on the Réunion Island , 2004 .

[26]  Christine Aubry,et al.  DéciBlé, a software package for wheat crop management simulation , 2005 .

[27]  Kevin A. Parton,et al.  Learning from the historical failure of farm management models to aid management practice. Part 2. Three systems approaches , 2006 .

[28]  F Guerrin,et al.  Modelling farmers' action: decision rules capture methodology and formalisation structure: a case of biomass flow operations in dairy farms of a tropical island. , 2007, Animal : an international journal of animal bioscience.

[29]  F. Papy,et al.  Modelling decision-making processes for annual crop management , 1998 .

[30]  R. Jarrige Ruminant nutrition : recommended allowances and feed tables , 1989 .

[31]  Harald Sverdrup,et al.  FARMFLOW - A dynamic model for phosphorus mass flow, simulating conventional and organic management of a Swedish dairy farm , 2007 .

[32]  M. E. Van Amburgh,et al.  The Cornell Net Carbohydrate and Protein System model for evaluating herd nutrition and nutrient excretion , 2004 .

[33]  Jean-François Martiné,et al.  Modélisation de la production potentielle de la canne à sucre en zone tropicale, sous conditions thermiques et hydriques contrastées. Applications du modèle , 2003 .

[34]  J. Vlaming,et al.  Assessing sustainability of low-external-input farm management systems with the nutrient monitoring approach: a case study in Kenya , 2001 .

[35]  Lucy Suchman Plans and situated actions: the problem of human-machine communication , 1987 .

[36]  F. K. van Evert,et al.  The MODCOM framework for component-based simulation , 2007 .

[37]  M. J. McGregor,et al.  Rural and Farming Systems Analysis: European Perspectives , 1994 .

[38]  Jean-Marie Paillat,et al.  Modélisation conceptuelle des flux d'azote en exploitation d'élevage bovin laitier à la Réunion , 2004 .

[39]  Xenofon Koutsoukos,et al.  On hybrid control of complex systems : a survey , 1998 .

[40]  S. Chander,et al.  InfoCrop: A dynamic simulation model for the assessment of crop yields, losses due to pests, and environmental impact of agro-ecosystems in tropical environments. I. Model description , 2006 .

[41]  Estimating the potential for ammonia emissions from livestock excreta and manures. , 2001, Environmental pollution.

[42]  James M. Gibbons,et al.  Impacts of changing relative prices on farm level dairy production in the UK , 1999 .

[43]  Jean-Marie Paillat,et al.  A conceptual representation of animal waste management at the farm scale: The case of the Reunion Island , 2006 .

[44]  Etienne Josien,et al.  Simulation of forage management strategies considering farm-level land diversity: Example of dairy farms in the Auvergne , 2007 .

[45]  Senthold Asseng,et al.  An overview of APSIM, a model designed for farming systems simulation , 2003 .

[46]  William J. Clancey,et al.  Simulating activities: Relating motives, deliberation, and attentive coordination , 2002, Cognitive Systems Research.

[47]  H. Steinfeld,et al.  Livestock's Long Shadow , 2006 .

[48]  P. Cellier,et al.  A mechanistic model for estimating ammonia volatilization from slurry applied to bare soil , 1997 .

[49]  Thierry Morvan,et al.  Vers une prévision opérationnelle des flux d'azote résultant de l'épandage de lisier : paramétrage d'un modèle dynamique de Simulation des transformations de l'azote des lisiers (STAL) , 2001 .

[50]  Michael Wallace,et al.  The development of a mathematical model to investigate Irish beef production systems , 2006 .

[51]  Mario Herrero,et al.  Integrated crop-livestock simulation models for scenario analysis and impact assessment , 2001 .