The complexity of depth-3 circuits computing symmetric Boolean functions
暂无分享,去创建一个
[1] Leslie G. Valiant,et al. Graph-Theoretic Arguments in Low-Level Complexity , 1977, MFCS.
[2] Michael E. Saks,et al. An improved exponential-time algorithm for k-SAT , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).
[3] Ran Raz,et al. Explicit lower bound of 4.5n - o(n) for boolena circuits , 2001, STOC '01.
[4] Pavel Pudlák,et al. Top-down lower bounds for depth-three circuits , 1995, computational complexity.
[5] Kazuo Iwama,et al. An Explicit Lower Bound of 5n - o(n) for Boolean Circuits , 2002, MFCS.
[6] Russell Impagliazzo,et al. Which Problems Have Strongly Exponential Complexity? , 2001, J. Comput. Syst. Sci..
[7] Johan Håstad,et al. Almost optimal lower bounds for small depth circuits , 1986, STOC '86.
[8] Claude E. Shannon,et al. The synthesis of two-terminal switching circuits , 1949, Bell Syst. Tech. J..
[9] Claus-Peter Schnorr. The network complexity and the Turing machine complexity of finite functions , 2004, Acta Informatica.
[10] Michael J. Fischer,et al. Relations Among Complexity Measures , 1979, JACM.
[11] Michael E. Saks,et al. An improved exponential-time algorithm for k-SAT , 2005, JACM.
[12] Mihalis Yannakakis,et al. On monotone formulae with restricted depth , 1984, STOC '84.
[13] Norbert Blum. A Boolean Function Requiring 3n Network Size , 1984, Theor. Comput. Sci..
[14] Michael E. Saks,et al. Exponential lower bounds for depth three Boolean circuits , 2000, computational complexity.
[15] Pavel Pudlák,et al. Satisfiability Coding Lemma , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.