The complexity of depth-3 circuits computing symmetric Boolean functions

We give tight lower bounds for the size of depth-3 circuits with limited bottom fanin computing symmetric Boolean functions. We show that any depth-3 circuit with bottom fanin k which computes the Boolean function Exactn/(k+1)n, has at least (1 + 1/k)n/(n + 1) gates. We show that for k = o(√n) this lower bound is essentially tight, by generalizing a known upper bound on the size of depth-3 circuits with bottom fanin 2, computing symmetric Boolean functions.

[1]  Leslie G. Valiant,et al.  Graph-Theoretic Arguments in Low-Level Complexity , 1977, MFCS.

[2]  Michael E. Saks,et al.  An improved exponential-time algorithm for k-SAT , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[3]  Ran Raz,et al.  Explicit lower bound of 4.5n - o(n) for boolena circuits , 2001, STOC '01.

[4]  Pavel Pudlák,et al.  Top-down lower bounds for depth-three circuits , 1995, computational complexity.

[5]  Kazuo Iwama,et al.  An Explicit Lower Bound of 5n - o(n) for Boolean Circuits , 2002, MFCS.

[6]  Russell Impagliazzo,et al.  Which Problems Have Strongly Exponential Complexity? , 2001, J. Comput. Syst. Sci..

[7]  Johan Håstad,et al.  Almost optimal lower bounds for small depth circuits , 1986, STOC '86.

[8]  Claude E. Shannon,et al.  The synthesis of two-terminal switching circuits , 1949, Bell Syst. Tech. J..

[9]  Claus-Peter Schnorr The network complexity and the Turing machine complexity of finite functions , 2004, Acta Informatica.

[10]  Michael J. Fischer,et al.  Relations Among Complexity Measures , 1979, JACM.

[11]  Michael E. Saks,et al.  An improved exponential-time algorithm for k-SAT , 2005, JACM.

[12]  Mihalis Yannakakis,et al.  On monotone formulae with restricted depth , 1984, STOC '84.

[13]  Norbert Blum A Boolean Function Requiring 3n Network Size , 1984, Theor. Comput. Sci..

[14]  Michael E. Saks,et al.  Exponential lower bounds for depth three Boolean circuits , 2000, computational complexity.

[15]  Pavel Pudlák,et al.  Satisfiability Coding Lemma , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.