On the minimum of a positive polynomial over the standard simplex
暂无分享,去创建一个
[1] M. Mignotte,et al. Polynomials: An Algorithmic Approach , 1999 .
[2] Jesús A. De Loera,et al. An effective version of Pólya's theorem on positive definite forms , 1996 .
[3] Fabrice Rouillier,et al. Solving Zero-Dimensional Systems Through the Rational Univariate Representation , 1999, Applicable Algebra in Engineering, Communication and Computing.
[4] Charles N. Delzell,et al. Positive Polynomials: From Hilbert’s 17th Problem to Real Algebra , 2001 .
[5] D. S. Arnon,et al. Algorithms in real algebraic geometry , 1988 .
[6] Laureano González-Vega,et al. Using Symmetric Functions to Describe the Solution Set of a Zero Dimensional Ideal , 1995, AAECC.
[7] Markus Schweighofer,et al. On the complexity of Schmu"dgen's Positivstellensatz , 2004, J. Complex..
[8] M-F Roy,et al. Géométrie algébrique réelle , 1987 .
[9] Bernard Mourrain,et al. The DMM bound: multivariate (aggregate) separation bounds , 2010, ISSAC.
[10] Pablo Solernó,et al. Effective Łojasiewicz inequalities in semialgebraic geometry , 1991, Applicable Algebra in Engineering, Communication and Computing.
[11] B. Reznick,et al. A new bound for Pólya's Theorem with applications to polynomials positive on polyhedra , 2001 .
[12] S. Verblunsky,et al. On Positive Polynomials , 1945 .
[13] John Canny,et al. The complexity of robot motion planning , 1988 .
[14] Marie-Françoise Roy,et al. A bound on the minimum of a real positive polynomial over the standard simplex , 2009, ArXiv.
[15] Richard Leroy. Certificats de positivité et minimisation polynomiale dans la base de Bernstein multivariée. (Certificates of positivity and polynomial minimization in the multivariate Bernstein basis) , 2008 .
[16] Juan Sabia,et al. On Sign Conditions Over Real Multivariate Polynomials , 2008, Discret. Comput. Geom..