Learning control of population transfer between subspaces of quantum systems using an adaptive target scheme

An adaptive target scheme is implemented for learning control of population transfer between subspaces of quantum systems. In this control scheme, the target state is updated according to the renormalized yield in the desired subspace throughout the learning iterations, to obtain the desired laser control field. In the numerical experiments, we perform learning control simulations based on a V-type three-subspace quantum system. The field obtained by learning control can transfer the population to the target subspace with high probability. In comparison with a fixed target state, this adaptive target scheme proves to be more efficient for the quantum control problem under consideration.

[1]  A. G. White,et al.  Experimental verification of decoherence-free subspaces. , 2000, Science.

[2]  Tzyh Jong Tarn,et al.  Fidelity-Based Probabilistic Q-Learning for Control of Quantum Systems , 2014, IEEE Transactions on Neural Networks and Learning Systems.

[3]  Ian R. Petersen,et al.  Sampled-Data Design for Robust Control of a Single Qubit , 2012, IEEE Transactions on Automatic Control.

[4]  Tzyh Jong Tarn,et al.  Incoherent Control of Quantum Systems With Wavefunction-Controllable Subspaces via Quantum Reinforcement Learning , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[5]  Ian R. Petersen,et al.  Quantum control theory and applications: A survey , 2009, IET Control Theory & Applications.

[6]  Wei Zhang,et al.  Learning control of charge transfer in molecular systems , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[7]  Jing Zhang,et al.  Protecting Coherence and Entanglement by Quantum Feedback Controls , 2010, IEEE Transactions on Automatic Control.

[8]  Daoyi Dong,et al.  Incoherent control of locally controllable quantum systems. , 2008, The Journal of chemical physics.

[9]  I. Petersen,et al.  Sliding mode control of quantum systems , 2009, 0911.0062.

[10]  Herschel Rabitz,et al.  A general formulation of monotonically convergent algorithms in the control of quantum dynamics beyond the linear dipole interaction , 2011, Comput. Phys. Commun..

[11]  I. Petersen,et al.  Notes on Sliding Mode Control of Two-Level Quantum Systems , 2011 .

[12]  Chen-Bin Zhang,et al.  Control of non-controllable quantum systems: a quantum control algorithm based on Grover iteration , 2005 .

[13]  Ian R. Petersen,et al.  Sampling-Based Learning Control for Quantum Systems With Uncertainties , 2015, IEEE Transactions on Control Systems Technology.

[14]  Esa Räsänen,et al.  Strong-field-ionization suppression by light-field control , 2012 .

[15]  E. Gross,et al.  Optimization schemes for selective molecular cleavage with tailored ultrashort laser pulses , 2011, 1102.3128.

[16]  G. Milburn,et al.  Quantum Measurement and Control , 2009 .

[17]  Ian R. Petersen,et al.  Sampling-based learning control of inhomogeneous quantum ensembles , 2013, 1308.1454.

[18]  Ian R. Petersen,et al.  Sliding mode control of two-level quantum systems , 2010, Autom..

[19]  Ian R. Petersen,et al.  Robust manipulation of superconducting qubits in the presence of fluctuations , 2014, Scientific Reports.

[20]  Tommaso Calarco,et al.  Optimal control technique for many-body quantum dynamics. , 2010, Physical review letters.

[21]  Herschel Rabitz,et al.  Fast-kick-off monotonically convergent algorithm for searching optimal control fields , 2011 .

[22]  Claudio Altafini,et al.  Modeling and Control of Quantum Systems: An Introduction , 2012, IEEE Transactions on Automatic Control.

[23]  Guang-Can Guo,et al.  Preserving Coherence in Quantum Computation by Pairing Quantum Bits , 1997 .

[24]  Daoyi Dong,et al.  Quantum State Tomography via Linear Regression Estimation , 2013, Scientific Reports.

[25]  Yukiyoshi Ohtsuki,et al.  Hybrid quantum control of photodesorption of NO from a metal surface , 2002 .

[26]  R. Vivie-Riedle,et al.  Optimal conversion of an atomic to a molecular Bose-Einstein condensate , 2002 .

[27]  Marco Wiering,et al.  2011 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN) , 2011, IJCNN 2011.

[28]  Herschel Rabitz,et al.  Noniterative algorithms for finding quantum optimal controls , 1999 .

[29]  Herschel Rabitz,et al.  Accelerated monotonic convergence of optimal control over quantum dynamics. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Volkhard May,et al.  Controlling excitonic wavepacket motion in the PS1 core-antenna system , 2004 .

[31]  Herschel A Rabitz,et al.  Quantum Optimally Controlled Transition Landscapes , 2004, Science.

[32]  Kempe,et al.  Universal fault-tolerant quantum computation on decoherence-free subspaces , 2000, Physical review letters.

[33]  R. de Vivie-Riedle,et al.  Quantum computation with vibrationally excited molecules. , 2002, Physical review letters.

[34]  Hirohiko Kono,et al.  Quantum optimal control of electron ring currents in chiral aromatic molecules. , 2007, The Journal of chemical physics.

[35]  C. Monroe,et al.  Decoherence of quantum superpositions through coupling to engineered reservoirs , 2000, Nature.

[36]  James Lam,et al.  Robust incoherent control of qubit systems via switching and optimisation , 2010, Int. J. Control.

[37]  Wei Zhang,et al.  Optimal control of charge transfer for slow H+ + D collisions with shaped laser pulses. , 2014, The Journal of chemical physics.

[38]  Herschel Rabitz,et al.  Frequency domain quantum optimal control under multiple constraints , 2016 .

[39]  Herschel Rabitz,et al.  Quantum optimal control of ozone isomerization , 2004 .