Robust stabilization of MIMO nonlinear systems by backstepping

The problem of global robust stabilization is investigated for a class of multi-input, minimum-phase nonlinear systems with unknown time-varying parameters or disturbances belonging to a given compact set. It is assumed that the systems admit a special structure, which is much more general than strict feedback form. It is shown that such a structure makes it possible to construct both Lyapunov functions and robust stabilizing controllers by the backstepping method.

[1]  B. Schwartz,et al.  Global normal forms for MIMO nonlinear systems, with application to stabilization and disturbance attenuation , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[2]  Riccardo Marino,et al.  Nonlinear control design , 1995 .

[3]  Martin Corless,et al.  A new class of stabilizing controllers for uncertain dynamical systems , 1982, CDC 1982.

[4]  J. Slotine,et al.  Robust input-output feedback linearization , 1993 .

[5]  I. Kanellakopoulos,et al.  Systematic Design of Adaptive Controllers for Feedback Linearizable Systems , 1991, 1991 American Control Conference.

[6]  A. Isidori Nonlinear Control Systems , 1985 .

[7]  P. Kokotovic,et al.  Backstepping Design of Robust Controllers for a Class of Nonlinear Systems , 1992 .

[8]  D. Mayne Nonlinear and Adaptive Control Design [Book Review] , 1996, IEEE Transactions on Automatic Control.

[9]  Zhihua Qu,et al.  Robust Control of Nonlinear Uncertain Systems Under Generalized Matching Conditions , 1993, 1993 American Control Conference.

[10]  M. Corless,et al.  Continuous state feedback guaranteeing uniform ultimate boundedness for uncertain dynamic systems , 1981 .

[11]  Wei Lin Global Robust Stabilization of Minimum-Phase Nonlinear Systems with Uncertainty , 1995 .

[12]  K. Wei Quadratic stabilizability of linear systems with structural independent time-varying uncertainties , 1990 .

[13]  Wei Lin,et al.  Robust control of a class of MIMO minimum-phase nonlinear systems , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[14]  Zhihua Qu,et al.  Robust control of cascaded and individually feedback linearizable nonlinear systems , 1994, Autom..

[15]  John Tsinias,et al.  Sufficient lyapunov-like conditions for stabilization , 1989, Math. Control. Signals Syst..

[16]  Randy A. Freeman,et al.  Robust Nonlinear Control Design , 1996 .

[17]  A. Isidori,et al.  New results and examples in nonlinear feedback stabilization , 1989 .

[18]  Riccardo Marino,et al.  Robust stabilization of feedback linearizable time-varying uncertain nonlinear systems, , 1993, Autom..

[19]  Guoxiang Gu,et al.  Global stabilization of MIMO minimum-phase nonlinear systems without strict triangular conditions ☆ , 1999 .

[20]  Alberto Isidori,et al.  Nonlinear control systems: an introduction (2nd ed.) , 1989 .

[21]  Wei Lin,et al.  Global Robust Stabilization of Minimum-Phase Nonlinear Systems with Uncertainty , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[22]  R. Freeman,et al.  Robust Nonlinear Control Design: State-Space and Lyapunov Techniques , 1996 .

[23]  G. Leitmann Guaranteed Ultimate Boundedness for a Class of Uncertain Linear Dynamical Systems , 1978, Differential Games and Control Theory III.