Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Main Galaxy Sample

We describe the algorithm that selects the main sample of galaxies for spectroscopy in the Sloan Digital Sky Survey (SDSS) from the photometric data obtained by the imaging survey. Galaxy photometric properties are measured using the Petrosian magnitude system, which measures flux in apertures determined by the shape of the surface brightness profile. The metric aperture used is essentially independent of cosmological surface brightness dimming, foreground extinction, sky brightness, and the galaxy central surface brightness. The main galaxy sample consists of galaxies with r-band Petrosian magnitudes r ≤ 17.77 and r-band Petrosian half-light surface brightnesses μ50 ≤ 24.5 mag arcsec-2. These cuts select about 90 galaxy targets per square degree, with a median redshift of 0.104. We carry out a number of tests to show that (1) our star-galaxy separation criterion is effective at eliminating nearly all stellar contamination while removing almost no genuine galaxies, (2) the fraction of galaxies eliminated by our surface brightness cut is very small (∼0.1%), (3) the completeness of the sample is high, exceeding 99%, and (4) the reproducibility of target selection based on repeated imaging scans is consistent with the expected random photometric errors. The main cause of incompleteness is blending with saturated stars, which becomes more significant for brighter, larger galaxies. The SDSS spectra are of high enough signal-to-noise ratio (S/N > 4 per pixel) that essentially all targeted galaxies (99.9%) yield a reliable redshift (i.e., with statistical error less than 30 km s-1). About 6% of galaxies that satisfy the selection criteria are not observed because they have a companion closer than the 55″ minimum separation of spectroscopic fibers, but these galaxies can be accounted for in statistical analyses of clustering or galaxy properties. The uniformity and completeness of the galaxy sample make it ideal for studies of large-scale structure and the characteristics of the galaxy population in the local universe.

[1]  Alexander S. Szalay,et al.  Galaxy Clustering in Early Sloan Digital Sky Survey Redshift Data , 2002 .

[2]  M. SubbaRao,et al.  Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Quasar Sample , 2002, astro-ph/0202251.

[3]  John E. Davis,et al.  Sloan Digital Sky Survey: Early Data Release , 2002 .

[4]  S. Okamura,et al.  Luminosity Functions of 10 Nearby Clusters of Galaxies. I. Data , 2002 .

[5]  V. Narayanan,et al.  Spectroscopic Target Selection for the Sloan Digital Sky Survey: The Luminous Red Galaxy Sample , 2001, astro-ph/0108153.

[6]  V. Narayanan,et al.  Color Separation of Galaxy Types in the Sloan Digital Sky Survey Imaging Data , 2001, astro-ph/0107201.

[7]  J. Gunn,et al.  A Photometricity and Extinction Monitor at the Apache Point Observatory , 2001, astro-ph/0106511.

[8]  Naoki Yasuda,et al.  Galaxy Number Counts from the Sloan Digital Sky Survey Commissioning Data , 2001, astro-ph/0105545.

[9]  D. Lamb,et al.  Solar System Objects Observed in the Sloan Digital Sky Survey Commissioning Data , 2001, astro-ph/0105511.

[10]  M. Fukugita,et al.  Statistical Properties of Bright Galaxies in the Sloan Digital Sky Survey Photometric System , 2001, astro-ph/0105401.

[11]  D. Madgwick,et al.  The 2dF Galaxy Redshift Survey: the number and luminosity density of galaxies , 2000, astro-ph/0012165.

[12]  Walter A. Siegmund,et al.  The Luminosity Function of Galaxies in SDSS Commissioning Data , 2000, astro-ph/0012085.

[13]  E. al.,et al.  Optical and Infrared Colors of Stars Observed by 2MASS and SDSS , 2000, astro-ph/0010052.

[14]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[15]  Norbert Zacharias,et al.  The First US Naval Observatory CCD Astrograph Catalog , 2000 .

[16]  Changbom Park,et al.  Topology from the Simulated Sloan Digital Sky Survey , 1999, astro-ph/9902332.

[17]  R. Nichol,et al.  Optical and Infrared Colors of Stars Observed by the Two Micron All Sky Survey and the Sloan Digital Sky Survey , 2000 .

[18]  Michael J. Kurtz,et al.  The Updated Zwicky Catalog (UZC) , 1999, astro-ph/9904265.

[19]  Robert Lupton,et al.  A Modified Magnitude System that Produces Well-Behaved Magnitudes, Colors, and Errors Even for Low Signal-to-Noise Ratio Measurements , 1999, astro-ph/9903081.

[20]  ApJ, in press , 1999 .

[21]  et al,et al.  The Sloan Digital Sky Survey Photometric Camera , 1998, astro-ph/9809085.

[22]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[23]  D. Weinberg,et al.  Mock 2dF and SDSS galaxy redshift surveys , 1998, astro-ph/9801250.

[24]  M. Fukugita,et al.  The Cosmic Baryon Budget , 1997, astro-ph/9712020.

[25]  M. Fukugita,et al.  The Sloan Digital Sky Survey Photometric System , 1996 .

[26]  A. Szalay,et al.  Effects of Sampling on Measuring Galaxy Count Probabilities , 1995, astro-ph/9508050.

[27]  S. Shectman,et al.  The Las Campanas Redshift Survey , 1996, astro-ph/9604167.

[28]  Max Tegmark A method for extracting maximum resolution power spectra from galaxy surveys , 1995, astro-ph/9502012.

[29]  J. Peacock,et al.  Power spectrum analysis of one-dimensional redshift surveys , 1991 .

[30]  N. Kaiser A sparse-sampling strategy for the estimation of large-scale clustering from redshift surveys , 1986 .

[31]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[32]  V. Petrosian,et al.  Surface brightness and evolution of galaxies , 1976 .

[33]  P. Wild,et al.  Catalogue of Galaxies and of Clusters of Galaxies , 1961 .