Genome Content and Phylogenomics Reveal both Ancestral and Lateral Evolutionary Pathways in Plant-Pathogenic Streptomyces Species

ABSTRACT Streptomyces spp. are highly differentiated actinomycetes with large, linear chromosomes that encode an arsenal of biologically active molecules and catabolic enzymes. Members of this genus are well equipped for life in nutrient-limited environments and are common soil saprophytes. Out of the hundreds of species in the genus Streptomyces, a small group has evolved the ability to infect plants. The recent availability of Streptomyces genome sequences, including four genomes of pathogenic species, provided an opportunity to characterize the gene content specific to these pathogens and to study phylogenetic relationships among them. Genome sequencing, comparative genomics, and phylogenetic analysis enabled us to discriminate pathogenic from saprophytic Streptomyces strains; moreover, we calculated that the pathogen-specific genome contains 4,662 orthologs. Phylogenetic reconstruction suggested that Streptomyces scabies and S. ipomoeae share an ancestor but that their biosynthetic clusters encoding the required virulence factor thaxtomin have diverged. In contrast, S. turgidiscabies and S. acidiscabies, two relatively unrelated pathogens, possess highly similar thaxtomin biosynthesis clusters, which suggests that the acquisition of these genes was through lateral gene transfer.

[1]  V. Burrus,et al.  Identification of genetic and environmental factors stimulating excision from Streptomyces scabiei chromosome of the toxicogenic region responsible for pathogenicity. , 2016, Molecular plant pathology.

[2]  R. Loria,et al.  Characterization of the Integration and Modular Excision of the Integrative Conjugative Element PAISt in Streptomyces turgidiscabies Car8 , 2014, PloS one.

[3]  Daniel Müllner,et al.  fastcluster: Fast Hierarchical, Agglomerative Clustering Routines for R and Python , 2013 .

[4]  A. Simao-Beaunoir,et al.  Detection of potential suberinase-encoding genes in Streptomyces scabiei strains and other actinobacteria. , 2013, Canadian journal of microbiology.

[5]  D. Huson,et al.  Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. , 2012, Systematic biology.

[6]  Johan A. Kers,et al.  Cytochrome P450-catalysed L-tryptophan nitration in thaxtomin phytotoxin biosynthesis , 2012, Nature chemical biology.

[7]  Z. Deng,et al.  Genomic and transcriptomic insights into the thermo-regulated biosynthesis of validamycin in Streptomyces hygroscopicus 5008 , 2012, BMC Genomics.

[8]  Young Cheol Kim,et al.  Comparative Genomics of Plant-Associated Pseudomonas spp.: Insights into Diversity and Inheritance of Traits Involved in Multitrophic Interactions , 2012, PLoS genetics.

[9]  N. Tucker,et al.  Draft Genome Sequence of the Human Pathogen Streptomyces somaliensis, a Significant Cause of Actinomycetoma , 2012, Journal of bacteriology.

[10]  M. Noda,et al.  Heme Protein and Hydroxyarginase Necessary for Biosynthesis of d-Cycloserine , 2012, Antimicrobial Agents and Chemotherapy.

[11]  R. Loria,et al.  Draft Genome Sequence of Streptomyces acidiscabies 84-104, an Emergent Plant Pathogen , 2012, Journal of bacteriology.

[12]  R. Loria,et al.  Evidence that thaxtomin C is a pathogenicity determinant of Streptomyces ipomoeae, the causative agent of Streptomyces soil rot disease of sweet potato. , 2012, Molecular plant-microbe interactions : MPMI.

[13]  D. Labeda Multilocus sequence analysis of phytopathogenic species of the genus Streptomyces. , 2011, International journal of systematic and evolutionary microbiology.

[14]  S. Brunak,et al.  SignalP 4.0: discriminating signal peptides from transmembrane regions , 2011, Nature Methods.

[15]  J. Poulain,et al.  Complete Genome Sequence of Streptomyces cattleya NRRL 8057, a Producer of Antibiotics and Fluorometabolites , 2011, Journal of bacteriology.

[16]  J. Badger,et al.  Streptomyces turgidiscabies Car8 contains a modular pathogenicity island that shares virulence genes with other actinobacterial plant pathogens. , 2011, Plasmid.

[17]  Bo Zhang,et al.  Genome Sequence of the Milbemycin-Producing Bacterium Streptomycesbingchenggensis , 2010, Journal of bacteriology.

[18]  Jeet Sukumaran,et al.  DendroPy: a Python library for phylogenetic computing , 2010, Bioinform..

[19]  R. Loria,et al.  Streptomyces scabies 87-22 contains a coronafacic acid-like biosynthetic cluster that contributes to plant-microbe interactions. , 2010, Molecular plant-microbe interactions : MPMI.

[20]  L. Holm,et al.  The Pfam protein families database , 2005, Nucleic Acids Res..

[21]  R. Sankaranarayanan,et al.  A Cell Wall–Degrading Esterase of Xanthomonas oryzae Requires a Unique Substrate Recognition Module for Pathogenesis on Rice[W] , 2009, The Plant Cell Online.

[22]  Chris Mungall,et al.  AmiGO: online access to ontology and annotation data , 2008, Bioinform..

[23]  E. Birney,et al.  Pfam: the protein families database , 2013, Nucleic Acids Res..

[24]  R. Loria,et al.  Streptomyces scabies 87-22 Possesses a Functional Tomatinase , 2008, Journal of bacteriology.

[25]  M. Joshi,et al.  Thaxtomin biosynthesis: the path to plant pathogenicity in the genus Streptomyces , 2008, Antonie van Leeuwenhoek.

[26]  Jun Ishikawa,et al.  Genome Sequence of the Streptomycin-Producing Microorganism Streptomyces griseus IFO 13350 , 2008, Journal of bacteriology.

[27]  A. Goesmann,et al.  The Genome Sequence of the Tomato-Pathogenic Actinomycete Clavibacter michiganensis subsp. michiganensis NCPPB382 Reveals a Large Island Involved in Pathogenicity , 2008, Journal of bacteriology.

[28]  Stefan Götz,et al.  Blast2GO: A Comprehensive Suite for Functional Analysis in Plant Genomics , 2007, International journal of plant genomics.

[29]  P. Mackiewicz,et al.  Streptomyces sudanensis sp. nov., a new pathogen isolated from patients with actinomycetoma , 2008, Antonie van Leeuwenhoek.

[30]  A. Tauch,et al.  Genomics of Actinobacteria: Tracing the Evolutionary History of an Ancient Phylum , 2007, Microbiology and Molecular Biology Reviews.

[31]  Markiyan Samborskyy,et al.  Complete genome sequence of the erythromycin-producing bacterium Saccharopolyspora erythraea NRRL23338 , 2007, Nature Biotechnology.

[32]  D. Hopwood,et al.  Soil to genomics: the Streptomyces chromosome. , 2006, Annual review of genetics.

[33]  Dennis R. Livesay,et al.  Probalign: multiple sequence alignment using partition function posterior probabilities , 2006, Bioinform..

[34]  Johan A. Kers,et al.  Evolution of plant pathogenicity in Streptomyces. , 2006, Annual review of phytopathology.

[35]  D. Bryant,et al.  A Simple and Robust Statistical Test for Detecting the Presence of Recombination , 2006, Genetics.

[36]  Johan A. Kers,et al.  A large, mobile pathogenicity island confers plant pathogenicity on Streptomyces species , 2004, Molecular microbiology.

[37]  G. Serio,et al.  A new method for calculating evolutionary substitution rates , 2005, Journal of Molecular Evolution.

[38]  Johan A. Kers,et al.  Nitration of a peptide phytotoxin by bacterial nitric oxide synthase , 2004, Nature.

[39]  John Maynard Smith,et al.  Analyzing the mosaic structure of genes , 1992, Journal of Molecular Evolution.

[40]  Gregory L. Challis,et al.  Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[41]  O. Gascuel,et al.  A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. , 2003, Systematic biology.

[42]  C. Stoeckert,et al.  OrthoMCL: identification of ortholog groups for eukaryotic genomes. , 2003, Genome research.

[43]  B. Barrell,et al.  Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2) , 2002, Nature.

[44]  R. Bukhalid,et al.  Horizontal Transfer of the Plant Virulence Gene, nec1, and Flanking Sequences among Genetically Distinct Streptomyces Strains in the Diastatochromogenes Cluster , 2002, Applied and Environmental Microbiology.

[45]  Yoshiyuki Sakaki,et al.  Genome sequence of an industrial microorganism Streptomyces avermitilis: Deducing the ability of producing secondary metabolites , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Eugene W. Myers,et al.  A whole-genome assembly of Drosophila. , 2000, Science.

[47]  Michael Y. Galperin,et al.  The COG database: a tool for genome-scale analysis of protein functions and evolution , 2000, Nucleic Acids Res..

[48]  S. Salzberg,et al.  Improved microbial gene identification with GLIMMER. , 1999, Nucleic acids research.

[49]  S. Kuninaga,et al.  Streptomyces turgidiscabies sp. nov. , 1998, International journal of systematic bacteriology.

[50]  V. Shevchik,et al.  Pectate lyase PelI of Erwinia chrysanthemi 3937 belongs to a new family , 1997, Journal of bacteriology.

[51]  N. Hugouvieux-Cotte-Pattat,et al.  Comparative analysis of the five major Erwinia chrysanthemi pectate lyases: enzyme characteristics and potential inhibitors , 1997, Journal of bacteriology.

[52]  S. Eddy,et al.  tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. , 1997, Nucleic acids research.

[53]  Simon Easteal,et al.  A program for calculating and displaying compatibility matrices as an aid in determining reticulate evolution in molecular sequences , 1996, Comput. Appl. Biosci..

[54]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[55]  R. Loria,et al.  Streptomyces acidiscabies sp. nov. , 1989 .