Adaptive enhancement of cardiac magnetic resonance (CMR) images

This paper presents a wavelet-based framework for enhancing the coherent structures attributable to the target organ in cardiac magnetic resonance (MR) images. Previous approaches focus on the Rician nature of noise in magnitude MR images. Image noise is but only one of the confounding factors that obscure the anatomical structures of the target organ. This paper models the image noise in a magnitude MR image in terms of two noise classes which occur over different ranges of signal intensity. An adaptive enhancement scheme is developed to achieve simultaneous attenuation of the effects of these factors and improvement in image contrast

[1]  R. E. Wheeler Statistical distributions , 1983, APLQ.

[2]  J. A. Ware,et al.  Wavelet-based Rayleigh background removal in MRI , 2003 .

[3]  M. Evans Statistical Distributions , 2000 .

[4]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[5]  Steven Kay,et al.  Fundamentals Of Statistical Signal Processing , 2001 .

[6]  Jan Sijbers,et al.  Parameter estimation from magnitude MR images , 1999, Int. J. Imaging Syst. Technol..

[7]  Kevin M. Johnson,et al.  Wavelet packet denoising of magnetic resonance images: Importance of Rician noise at low SNR , 1999, Magnetic resonance in medicine.

[8]  Rik Van de Walle,et al.  An integrated method of adaptive enhancement for unsupervised segmentation of MRI brain images , 2003, Pattern Recognit. Lett..

[9]  Paul S. Addison,et al.  The Illustrated Wavelet Transform Handbook , 2002 .

[10]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  C. Burrus,et al.  Introduction to Wavelets and Wavelet Transforms: A Primer , 1997 .

[12]  Robert D. Nowak,et al.  Wavelet-based Rician noise removal for magnetic resonance imaging , 1999, IEEE Trans. Image Process..

[13]  Sujit K. Ghosh,et al.  Essential Wavelets for Statistical Applications and Data Analysis , 2001, Technometrics.

[14]  H. Gudbjartsson,et al.  The rician distribution of noisy mri data , 1995, Magnetic resonance in medicine.

[15]  T.M. Talavage,et al.  Testing a model for MR imager noise , 2002, Proceedings of the Second Joint 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society] [Engineering in Medicine and Biology.

[16]  Maarten Jansen,et al.  Noise Reduction by Wavelet Thresholding , 2001 .

[17]  Robert Nowak,et al.  Noise removal methods for high resolution MRI , 1997, 1997 IEEE Nuclear Science Symposium Conference Record.

[18]  John Minkoff,et al.  Signal Processing Fundamentals and Applications for Communications and Sensing Systems , 2002 .

[19]  Aleksandra Pizurica,et al.  A versatile wavelet domain noise filtration technique for medical imaging , 2003, IEEE Transactions on Medical Imaging.

[20]  S. Mallat A wavelet tour of signal processing , 1998 .

[21]  Aleksandra Pizurica,et al.  Image denoising using wavelets and spatial context modeling , 2002 .

[22]  David L. Donoho,et al.  De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.

[23]  I. Johnstone,et al.  Wavelet Shrinkage: Asymptopia? , 1995 .

[24]  D. Adam The illustrated wavelet transform handbook: introductory theory and applications in science, engineering, medicine and finance , 2004 .

[25]  William K. Pratt,et al.  Digital Image Processing: PIKS Inside , 2001 .

[26]  J. Sijbers,et al.  Signal and noise estimation from magnetic resonance images , 1998 .

[27]  Nouna Kettaneh,et al.  Statistical Modeling by Wavelets , 1999, Technometrics.

[28]  K J Blinowska,et al.  Introduction to wavelet analysis. , 1997, British journal of audiology.