On generalized probabilities: correlation polytopes for automaton logic and generalized urn models, extensions of quantum mechanics and parameter cheats

Three extensions and reinterpretations of nonclassical probabilities are reviewed. (i) We propose to generalize the probability axiom of quantum mechanics to self-adjoint positive operators of trace one. Furthermore, we discuss the Cartesian and polar decomposition of arbitrary normal operators and the possibility to operationalize the corresponding observables. Thereby we review and emphasize the use of observables which maximally represent the context. (ii) In the second part, we discuss Pitowsky polytopes for automaton logic as well as for generalized urn models and evaluate methods to find the resulting Boole-Bell type (in)equalities. (iii) Finally, so-called ``parameter cheats'' are introduced, whereby parameters are transformed bijectively and nonlinearly in such a way that classical systems mimic quantum correlations and vice versa. It is even possible to introduce parameter cheats which violate the Boole-Bell type inequalities stronger than quantum ones, thereby trespassing the Tsirelson limit. The price to be paid is nonuniformity.

[1]  Edward F. Moore,et al.  Gedanken-Experiments on Sequential Machines , 1956 .

[2]  A. Kent,et al.  Simulating quantum mechanics by non-contextual hidden variables , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[3]  B. Tsirelson Some results and problems on quan-tum Bell-type inequalities , 1993 .

[4]  George Boole,et al.  An Investigation of the Laws of Thought: Frontmatter , 2009 .

[5]  Karl Svozil,et al.  Randomness and undecidability in physics , 1993 .

[6]  J. Bell On the Problem of Hidden Variables in Quantum Mechanics , 1966 .

[7]  A. Zeilinger A Foundational Principle for Quantum Mechanics , 1999, Synthese Library.

[8]  J. Bell,et al.  Speakable and Unspeakable in Quatum Mechanics , 1988 .

[9]  Reck,et al.  Experimental realization of any discrete unitary operator. , 1994, Physical review letters.

[10]  B. Tsirelson Quantum analogues of the Bell inequalities. The case of two spatially separated domains , 1987 .

[11]  N. S. Barnett,et al.  Private communication , 1969 .

[12]  J. VonNeumann Mathematische Grundlagen der Quantenmechanik , 1932 .

[13]  K. Svozil,et al.  Automaton logic , 1996 .

[14]  F. Murnaghan The unitary and rotation groups , 1962 .

[15]  Itamar Pitowsky,et al.  From George Boole To John Bell — The Origins of Bell’s Inequality , 1989 .

[16]  G. Krenn,et al.  Stronger-Than-Quantum Correlations , 1995, quant-ph/9503010.

[17]  J. Harding Decompositions in Quantum Logic , 1996 .

[18]  P. Halmos Finite-Dimensional Vector Spaces , 1960 .

[19]  A. Dvurecenskij Gleason's Theorem and Its Applications , 1993 .

[20]  Karl Svozil Quantum interfaces , 2000 .

[21]  A. Zeilinger,et al.  Speakable and Unspeakable in Quantum Mechanics , 1989 .

[22]  I. Pitowsky Resolution of the Einstein-Podolsky-Rosen and Bell Paradoxes , 1982 .

[23]  Ron Wright Generalized urn models , 1990 .

[24]  Ron Wright THE STATE OF THE PENTAGON A NONCLASSICAL EXAMPLE , 1978 .

[25]  I. Pitowsky,et al.  George Boole's ‘Conditions of Possible Experience’ and the Quantum Puzzle , 1994, The British Journal for the Philosophy of Science.

[26]  M. Redhead,et al.  Nonlocality and the Kochen-Specker paradox , 1983 .

[27]  A. Gleason Measures on the Closed Subspaces of a Hilbert Space , 1957 .

[28]  M. Planck,et al.  Physikalische Abhandlungen und Vorträge , 1958 .

[29]  E. Specker,et al.  The Problem of Hidden Variables in Quantum Mechanics , 1967 .

[30]  G. Ziegler Lectures on Polytopes , 1994 .

[31]  G. Boole XV. On the Theory of probabilities , Proceedings of the Royal Society of London.

[32]  B. S. Cirel'son Quantum generalizations of Bell's inequality , 1980 .

[33]  Itamar Pitowsky,et al.  Correlation polytopes: Their geometry and complexity , 1991, Math. Program..

[34]  Physical Review , 1965, Nature.

[35]  Karl Svozil,et al.  Boole-Bell-type inequalities in Mathematica , 2001 .

[36]  H. Raiffa,et al.  3. The Double Description Method , 1953 .

[37]  Josef Tkadlec Greechie Diagrams of Small Quantum Logics with Small State Spaces , 1998 .

[38]  A. Shimony,et al.  Bell's theorem. Experimental tests and implications , 1978 .

[39]  I. Pitowsky Quantum Probability ― Quantum Logic , 1989 .

[40]  Karl Svozil,et al.  Quantum Logic , 1998, Discrete mathematics and theoretical computer science.

[41]  October I Physical Review Letters , 2022 .

[42]  E. Specker,et al.  The Calculus of Partial Propositional Functions , 1990 .

[43]  K. Svozil,et al.  Optimal tests of quantum nonlocality , 2000, quant-ph/0011060.