Comparative technology assessment of future InP HBT ultrahigh-speed digital circuits

Aggressively scaled type-I and type-II InP-based single and double-heterojunction bipolar transistor technologies are compared for ultrahigh-speed digital applications. Device and circuit figures-of-merit, as well as thermal characteristics are studied on the basis of improved hydrodynamic (HD) device models. Device simulations were calibrated against experimental device data for 80 Gb/s operation, and circuit simulations checked for validity against real circuit prototypes. The excellent agreement was used as the basis for performance optimization and scaling, and ensures our study if firmly grounded in reality. The investigation provides a needed perspective on the relative impact of device figures-of-merit, band structure, breakdown voltage, and material properties on the ultimate performance of practical digital circuits: We show that the type-II DHBTs appear to be the most promising technological approach to achieve multiplexer bit rates towards 300 Gb/s with realistic scaling parameters.

[1]  S. Blayac,et al.  Effect of base thickness reduction on high speed characteristics and base resistance of InGaAs/InP heterojunction bipolar transistor , 2003, International Conference onIndium Phosphide and Related Materials, 2003..

[2]  S. P. Watkins,et al.  InP/GaAsSb/InP double HBTs: a new alternative for InP-based DHBTs , 2001 .

[3]  M. Ida,et al.  3.48 ps ECL ring oscillator using over-300 GHz f/sub T//f/sub max/ InP DHBTs , 2003 .

[4]  Hans-Martin Rein,et al.  A novel transistor model for simulating avalanche-breakdown effects in Si bipolar circuits , 2002 .

[5]  D. Look,et al.  Monte Carlo simulation of bulk hole transport in AlxGa1−xAs, In1−xAlxAs, and GaAsxSb1−x , 1995 .

[6]  C. Bolognesi,et al.  Extraction of the average collector velocity in high-speed "Type-II" InP-GaAsSb-InP DHBTs , 2004, IEEE Electron Device Letters.

[7]  R. Stratton,et al.  Diffusion of Hot and Cold Electrons in Semiconductor Barriers , 1962 .

[9]  J. López-González,et al.  The importance of bandgap narrowing distribution between the conduction and valence bands in abrupt HBTs , 1997 .

[10]  M. Shur,et al.  Handbook Series on Semiconductor Parameters , 1996 .

[11]  B. Gorman,et al.  Temperature dependence of the band gap of GaAsSb epilayers , 2002 .

[12]  J. M. McGregor,et al.  BAND-GAP NARROWING IN NOVEL III-V SEMICONDUCTORS , 1990 .

[13]  S. Chung,et al.  Growth and device performance of InP/GaAsSb HBTs , 2003, International Conference onIndium Phosphide and Related Materials, 2003..

[15]  Tadao Ishibashi,et al.  Fabrication and characterization of high-performance InP/InGaAs double-heterojunction bipolar transistors , 1994 .

[16]  J. Kuo,et al.  Ultra high-speed InP-InGaAs SHBTs with f/sub max/ of 478 GHz , 2003, IEEE Electron Device Letters.

[17]  Karl Hess,et al.  Theory of high-field transport of holes in GaAs and InP , 1984 .

[18]  Paolo Antognetti,et al.  Semiconductor Device Modeling with Spice , 1988 .

[19]  N. D. Durie,et al.  Digest of papers , 1976 .

[20]  Vertical scaling of 0.25-μm emitter InP/InGaAs single heterojunction bipolar transistors with f/sub T/ of 452 GHz , 2003, IEEE Electron Device Letters.

[21]  Heinz Jäckel,et al.  A physical hydrodynamic 2D model for simulation and scaling of InP/InGaAs(P) DHBTs and circuits with limited complexity , 2006 .

[22]  M. Sokolich,et al.  InP HBT integrated circuit technology with selectively implanted subcollector and regrown device layers , 2004, IEEE Journal of Solid-State Circuits.

[23]  K. Tomizawa,et al.  Numerical simulation of submicron semiconductor devices , 1993 .

[24]  M. Sokolich,et al.  Demonstration of sub-5 ps CML ring oscillator gate delay with reduced parasitic AlInAs/InGaAs HBT , 2001, IEEE Electron Device Letters.

[25]  M. Ida,et al.  Ultrahigh-Speed InP/InGaAs DHBTs with Very High Current Density , 2003 .

[26]  M. Fukuda,et al.  Highly reliable 1.55 mu m GaInAsP laser diodes buried with semi-insulating iron-doped InP , 1994 .

[28]  Sparc Conference proceedings 2003 , 2003 .

[29]  S. P. Watkins,et al.  TYPE II PHOTOLUMINESCENCE AND CONDUCTION BAND, OFFSETS OF GAASSB/INGAAS AND GAASSB/INP HETEROSTRUCTURES GROWN BY METALORGANIC VAPOR PHASE EPITAXY , 1998 .

[30]  K. Taguchi,et al.  Monte Carlo simulation of impact ionization rates in InAlAs-InGaAs square and graded barrier superlattice , 1995 .

[31]  Thomas P. Pearsall,et al.  GaInAsP alloy semiconductors , 1982 .

[32]  T. Kjellberg,et al.  A 165-Gb/s 4:1 multiplexer in InP DHBT technology , 2005, IEEE Compound Semiconductor Integrated Circuit Symposium, 2005. CSIC '05..

[33]  I. Lindau,et al.  New and unified model for Schottky barrier and III–V insulator interface states formation , 1979 .

[34]  B. Jalali,et al.  InP HBTs Growth, Processing, and Applications , 1995 .

[35]  M. Ida,et al.  Over 300 GHz f/sub T/ and f/sub max/ InP/InGaAs double heterojunction bipolar transistors with a thin pseudomorphic base , 2002, IEEE Electron Device Letters.

[36]  J.F. Prairie,et al.  Self-aligned InP DHBT with f/sub /spl tau// and f/sub max/ over 300 GHz in a new manufacturable technology , 2004, IEEE Electron Device Letters.

[37]  M. Feng,et al.  Record fT and fT+fMAX performance of InP/InGaAs single heterojunction bipolar transistors , 2003 .

[38]  N. D. Kataria,et al.  Ellipsoidal mass anisotropy of the L-valley in n-GaSb , 1975 .

[39]  B. Vinter Small-signal characteristics of GaAs, InP and n-Ge at high fields , 1974 .

[40]  David J. Frank,et al.  Empirical fit to band discontinuities and barrier heights in III–V alloy systems , 1992 .

[41]  Spin relaxation of conduction electrons in bulk III-V semiconductors , 2001, cond-mat/0111076.

[42]  J. Fastenau,et al.  InGaAs-InP DHBTs for increased digital IC bandwidth having a 391-GHz f/sub /spl tau// and 505-GHz f/sub max/ , 2005, IEEE Electron Device Letters.

[43]  L. Reggiani,et al.  Enhanced shot noise from tunneling and space-charge positive feedback , 2000 .

[44]  Agnieszka Konczykowska,et al.  40 Gbit/s digital IC fabricated using InP/GaAsSb/InP DHBT technology , 2005 .

[45]  C. Bolognesi BV/sub CEO/--BV/sub CBO/ separation and sharpness of breakdown in high-speed bipolar transistors , 2005, IEEE Electron Device Letters.

[46]  Y. Amamiya,et al.  120-Gb/s multiplexing and 110-Gb/s demultiplexing ICs , 2004, IEEE Journal of Solid-State Circuits.

[47]  Hideyuki Nosaka,et al.  4-bit multiplexer/demultiplexer chip set for 40-Gbit/s optical communication systems , 2003, IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 2003.

[48]  M. Peter,et al.  BAND GAPS AND BAND OFFSETS IN STRAINED GAAS1-YSBY ON INP GROWN BY METALORGANIC CHEMICAL VAPOR DEPOSITION , 1999 .

[49]  M. Iwamoto,et al.  GaAsSb DHBT IC technology for RF and microwave instrumentation , 2005, IEEE Compound Semiconductor Integrated Circuit Symposium, 2005. CSIC '05..

[50]  Milton Feng,et al.  InP/InGaAs SHBTs with 75 nm collector and ft> 500 GHz , 2003 .

[51]  Keh-Yung Cheng,et al.  Graded base type-II InP/GaAsSb DHBT with f/sub T/=475 GHz , 2006, IEEE Electron Device Letters.

[52]  Haitao Gan,et al.  An Analytic Expression of Thermal Diffusion Coefficient for the Hydrodynamic Simulation of Semiconductor Devices , 2001, VLSI Design.