Design of transcription regulating riboswitches.

In this chapter, we review both computational and experimental aspects of de novo RNA sequence design. We give an overview of currently available design software and their limitations, and discuss the necessary setup to experimentally validate proper function in vitro and in vivo. We focus on transcription-regulating riboswitches, a task that has just recently lead to first successful designs of such RNA elements.

[1]  Satoru Miyano,et al.  Prediction of Transcriptional Terminators in Bacillus subtilis and Related Species , 2005, PLoS Comput. Biol..

[2]  Yann Ponty,et al.  A weighted sampling algorithm for the design of RNA sequences with targeted secondary structure and nucleotide distribution , 2013, Bioinform..

[3]  Atsushi Ogawa,et al.  Aptazyme-based riboswitches as label-free and detector-free sensors for cofactors. , 2007, Bioorganic & medicinal chemistry letters.

[4]  David H Mathews,et al.  Prediction of RNA secondary structure by free energy minimization. , 2006, Current opinion in structural biology.

[5]  Klaus-Peter Zauner,et al.  Design of interacting multi-stable nucleic acids for molecular information processing , 2011, Biosyst..

[6]  Peter F. Stadler,et al.  Partition function and base pairing probabilities of RNA heterodimers , 2006, Algorithms for Molecular Biology.

[7]  Ronald R. Breaker,et al.  Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression , 2002, Nature.

[8]  Peter F. Stadler,et al.  Basin Hopping Graph: a computational framework to characterize RNA folding landscapes , 2014, Bioinform..

[9]  Niles A. Pierce,et al.  Nucleic acid sequence design via efficient ensemble defect optimization , 2011, J. Comput. Chem..

[10]  Mohammad Ganjtabesh,et al.  Evolutionary solution for the RNA design problem , 2014, Bioinform..

[11]  P. Schuster,et al.  Analysis of RNA sequence structure maps by exhaustive enumeration II. Structures of neutral networks and shape space covering , 1996 .

[12]  Michael T. Wolfinger,et al.  Folding kinetics of large RNAs. , 2008, Journal of molecular biology.

[13]  S. Takayama,et al.  The art of reporter proteins in science: past, present and future applications. , 2010, BMB reports.

[14]  S. Klußmann,et al.  The aptamer handbook : functional oligonucleotides and their applications , 2006 .

[15]  Anne Condon,et al.  A new algorithm for RNA secondary structure design. , 2004, Journal of molecular biology.

[16]  Tamar Schlick,et al.  Dynamic Energy Landscapes of Riboswitches Help Interpret Conformational Rearrangements and Function , 2012, PLoS Comput. Biol..

[17]  P. Stadler,et al.  De novo design of a synthetic riboswitch that regulates transcription termination , 2012, Nucleic acids research.

[18]  Rolf Backofen,et al.  INFO-RNA - a fast approach to inverse RNA folding , 2006, Bioinform..

[19]  Thomas E. Landrain,et al.  De novo automated design of small RNA circuits for engineering synthetic riboregulation in living cells , 2012, Proceedings of the National Academy of Sciences.

[20]  Walter Fontana,et al.  Fast folding and comparison of RNA secondary structures , 1994 .

[21]  É. Massé,et al.  Comparative Study between Transcriptionally- and Translationally-Acting Adenine Riboswitches Reveals Key Differences in Riboswitch Regulatory Mechanisms , 2011, PLoS genetics.

[22]  Alfonso Jaramillo,et al.  Full Design Automation of Multi-State RNA Devices to Program Gene Expression Using Energy-Based Optimization , 2013, PLoS Comput. Biol..

[23]  P. Schuster,et al.  From sequences to shapes and back: a case study in RNA secondary structures , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[24]  N. Majdalani,et al.  DsrA RNA regulates translation of RpoS message by an anti-antisense mechanism, independent of its action as an antisilencer of transcription. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[25]  R. Micura,et al.  The dynamic nature of RNA as key to understanding riboswitch mechanisms. , 2011, Accounts of chemical research.

[26]  Alain Xayaphoummine,et al.  Kinefold web server for RNA/DNA folding path and structure prediction including pseudoknots and knots , 2005, Nucleic Acids Res..

[27]  Laising Yen,et al.  Engineering high-speed allosteric hammerhead ribozymes , 2007, Biological chemistry.

[28]  P. Schuster,et al.  Generic properties of combinatory maps: neutral networks of RNA secondary structures. , 1997, Bulletin of mathematical biology.

[29]  Ralph Bock,et al.  Designing and using synthetic RNA thermometers for temperature-controlled gene expression in bacteria , 2009, Nature Protocols.

[30]  Peter F. Stadler,et al.  ViennaRNA Package 2.0 , 2011, Algorithms for Molecular Biology.

[31]  Peter F. Stadler,et al.  Thermodynamics of RNA-RNA Binding , 2006, German Conference on Bioinformatics.

[32]  Eric D Brown,et al.  A FACS‐Based Approach to Engineering Artificial Riboswitches , 2008, Chembiochem : a European journal of chemical biology.

[33]  D. Crothers,et al.  The speed of RNA transcription and metabolite binding kinetics operate an FMN riboswitch. , 2005, Molecular cell.

[34]  R R Breaker,et al.  Relationship between internucleotide linkage geometry and the stability of RNA. , 1999, RNA.

[35]  Peter Clote,et al.  Rnaifold: a Constraint Programming Algorithm for RNA inverse Folding and molecular Design , 2013, J. Bioinform. Comput. Biol..

[36]  J. Bida,et al.  Squaring theory with practice in RNA design. , 2012, Current opinion in structural biology.

[37]  E. Westhof,et al.  Geometric nomenclature and classification of RNA base pairs. , 2001, RNA.

[38]  Torsten Waldminghaus,et al.  Generation of synthetic RNA-based thermosensors , 2008, Biological chemistry.

[39]  Christoph Flamm,et al.  Memory-efficient RNA energy landscape exploration , 2014, Bioinform..

[40]  K. Weeks,et al.  Selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE): quantitative RNA structure analysis at single nucleotide resolution , 2006, Nature Protocols.

[41]  Peter Clote,et al.  RNAiFold: a web server for RNA inverse folding and molecular design , 2013, Nucleic Acids Res..

[42]  E. Westhof,et al.  A pH-responsive riboregulator. , 2009, Genes & development.

[43]  Peter F. Stadler,et al.  A folding algorithm for extended RNA secondary structures , 2011, Bioinform..

[44]  E. Brody,et al.  Prediction of rho-independent Escherichia coli transcription terminators. A statistical analysis of their RNA stem-loop structures. , 1990 .

[45]  Beatrix Suess,et al.  Screening for engineered neomycin riboswitches that control translation initiation. , 2007, RNA.

[46]  Michael T. Wolfinger,et al.  BarMap: RNA folding on dynamic energy landscapes. , 2010, RNA.

[47]  Ingrid G. Abfalter,et al.  Computational design of RNAs with complex energy landscapes , 2013, Biopolymers.

[48]  R. Breaker Engineered allosteric ribozymes as biosensor components. , 2002, Current opinion in biotechnology.

[49]  M. Tomita,et al.  Analysis of complete genomes suggests that many prokaryotes do not rely on hairpin formation in transcription termination. , 1998, Nucleic acids research.

[50]  P. Stadler,et al.  Design of multistable RNA molecules. , 2001, RNA.

[51]  C. Chan,et al.  Quantitative analysis of transcriptional pausing by Escherichia coli RNA polymerase: his leader pause site as paradigm. , 1996, Methods in enzymology.

[52]  P. Schuster,et al.  Analysis of RNA sequence structure maps by exhaustive enumeration I. Neutral networks , 1995 .

[53]  Ivo L Hofacker,et al.  Energy-directed RNA structure prediction. , 2014, Methods in molecular biology.

[54]  B. Berger,et al.  A global sampling approach to designing and reengineering RNA secondary structures , 2012, Nucleic acids research.

[55]  F. Narberhaus,et al.  Thermozymes: Synthetic RNA thermometers based on ribozyme activity. , 2013, RNA biology.

[56]  Robert Landick,et al.  Bacterial transcription terminators: the RNA 3'-end chronicles. , 2011, Journal of molecular biology.

[57]  Eric Westhof,et al.  The non-Watson-Crick base pairs and their associated isostericity matrices. , 2002, Nucleic acids research.

[58]  Jotun Hein,et al.  Frnakenstein: multiple target inverse RNA folding , 2012, BMC Bioinformatics.

[59]  Minjae Lee,et al.  RNA design rules from a massive open laboratory , 2014, Proceedings of the National Academy of Sciences.

[60]  M P Deutscher,et al.  A uridine-rich sequence required for translation of prokaryotic mRNA. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[61]  A. Torda,et al.  Dynamics in Sequence Space for RNA Secondary Structure Design. , 2012, Journal of chemical theory and computation.

[62]  B. Suess,et al.  Engineered riboswitches: Overview, problems and trends , 2008, RNA biology.

[63]  Ronald R. Breaker,et al.  Engineered allosteric ribozymes that sense the bacterial second messenger cyclic diguanosyl 5'-monophosphate. , 2012, Analytical chemistry.

[64]  Juliane Neupert,et al.  Design of simple synthetic RNA thermometers for temperature-controlled gene expression in Escherichia coli , 2008, Nucleic acids research.

[65]  Hebing Chen,et al.  ARDesigner: a web-based system for allosteric RNA design. , 2010, Journal of biotechnology.

[66]  Akito Taneda,et al.  MODENA: a multi-objective RNA inverse folding , 2010, Advances and applications in bioinformatics and chemistry : AABC.