The fractional Sturm-Liouville problem - Numerical approximation and application in fractional diffusion

The numerical method of solving the fractional eigenvalue problem is derived in the case when the fractional SturmLiouville equation is subjected to the mixed boundary conditions. This non-integer order differential equation is discretized to the scheme with the symmetric matrix representing the action of the numerically expressed composition of the left and the right Caputo derivative. The numerical eigenvalues are thus real, and the eigenvectors associated to distinct eigenvalues are orthogonal in the respective finite-dimensional Hilbert space. The advantage of the proposed method is the formulation which allows us to construct the approximate eigenfunctions which form an orthonormal function system in the infinite-dimensional weighted Lebesgue integrable function space. The developed numerical method of calculation of the eigenvalues and eigenfunctions is then applied in construction of the approximate solution to the 1D space-time fractional diffusion problem in a bounded domain. A new numerical method for solving a fractional eigenvalue problem has been proposed.The approximate eigenfunctions are orthogonal at each step of the proposed method.The method is applied in the approximate solution to fractional diffusion problem.

[1]  MOHSEN ZAYERNOURI,et al.  Tempered Fractional Sturm-Liouville EigenProblems , 2015, SIAM J. Sci. Comput..

[2]  Margarita Rivero,et al.  A fractional approach to the Sturm-Liouville problem , 2013 .

[3]  Agnieszka B. Malinowska,et al.  Variational Methods for the Fractional Sturm--Liouville Problem , 2013, 1304.6258.

[4]  M. Ciesielski,et al.  Numerical solution of fractional oscillator equation , 2011, Appl. Math. Comput..

[5]  O. Agrawal,et al.  Models and Numerical Solutions of Generalized Oscillator Equations , 2014 .

[6]  O. P. Agrawal,et al.  On a Regular Fractional Sturm-Liouville Problem with derivatives of order in (0,1) , 2012, Proceedings of the 13th International Carpathian Control Conference (ICCC).

[7]  Dumitru Baleanu,et al.  Fractional Bateman—Feshbach Tikochinsky Oscillator , 2014 .

[8]  George E. Karniadakis,et al.  Fractional Sturm-Liouville eigen-problems: Theory and numerical approximation , 2013, J. Comput. Phys..

[9]  Fathi M. Allan,et al.  An efficient algorithm for solving higher-order fractional Sturm-Liouville eigenvalue problems , 2014, J. Comput. Phys..

[10]  Agnieszka B. Malinowska,et al.  Introduction to the Fractional Calculus of Variations , 2012 .

[11]  N. Ford,et al.  Analysis of Fractional Differential Equations , 2002 .

[12]  Om P. Agrawal,et al.  A Numerical Scheme for a Class of Parametric Problem of Fractional Variational Calculus , 2011 .

[13]  L. Bourdin,et al.  Variational integrator for fractional Euler–Lagrange equations , 2011, 1103.0465.

[14]  Riewe,et al.  Nonconservative Lagrangian and Hamiltonian mechanics. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[15]  F. Atkinson,et al.  Multiparameter Eigenvalue Problems: Sturm-Liouville Theory , 2010 .

[16]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[17]  Laplace transform solution of the problem of time-fractional heat conduction in a two-layered slab , 2015 .

[18]  Y. Povstenko,et al.  The Dirichlet problem for the time-fractional advection-diffusion equation in a line segment , 2016, Boundary Value Problems.

[19]  Numerical solution of non-homogenous fractional oscillator equation in integral form , 2015 .

[20]  I. Podlubny Fractional differential equations , 1998 .

[21]  Mariusz Ciesielski,et al.  Numerical solution of fractional Sturm-Liouville equation in integral form , 2014, 1405.2630.

[22]  Mariusz Ciesielski,et al.  Fractional oscillator equation - Transformation into integral equation and numerical solution , 2015, Appl. Math. Comput..

[23]  Malgorzata Klimek,et al.  Regular Sturm-Liouville Problem with Riemann-Liouville Derivatives of Order in (1, 2): Discrete Spectrum, Solutions and Applications , 2014, RRNR.

[24]  Qasem M. Al-Mdallal,et al.  An efficient method for solving fractional Sturm–Liouville problems , 2009 .

[25]  Regular fractional Sturm-Liouville problem with discrete spectrum: Solutions and applications , 2014, ICFDA'14 International Conference on Fractional Differentiation and Its Applications 2014.

[26]  The Dirichlet problem for the time-fractional advection-diffusion equation in a half-space , 2015 .

[27]  A. Malinowska,et al.  Applications of the fractional Sturm-Liouville problem to the space-time fractional diffusion in a finite domain , 2016 .

[28]  Om Prakash Agrawal,et al.  Fractional Sturm-Liouville problem , 2013, Comput. Math. Appl..