The fractional Sturm-Liouville problem - Numerical approximation and application in fractional diffusion
暂无分享,去创建一个
[1] MOHSEN ZAYERNOURI,et al. Tempered Fractional Sturm-Liouville EigenProblems , 2015, SIAM J. Sci. Comput..
[2] Margarita Rivero,et al. A fractional approach to the Sturm-Liouville problem , 2013 .
[3] Agnieszka B. Malinowska,et al. Variational Methods for the Fractional Sturm--Liouville Problem , 2013, 1304.6258.
[4] M. Ciesielski,et al. Numerical solution of fractional oscillator equation , 2011, Appl. Math. Comput..
[5] O. Agrawal,et al. Models and Numerical Solutions of Generalized Oscillator Equations , 2014 .
[6] O. P. Agrawal,et al. On a Regular Fractional Sturm-Liouville Problem with derivatives of order in (0,1) , 2012, Proceedings of the 13th International Carpathian Control Conference (ICCC).
[7] Dumitru Baleanu,et al. Fractional Bateman—Feshbach Tikochinsky Oscillator , 2014 .
[8] George E. Karniadakis,et al. Fractional Sturm-Liouville eigen-problems: Theory and numerical approximation , 2013, J. Comput. Phys..
[9] Fathi M. Allan,et al. An efficient algorithm for solving higher-order fractional Sturm-Liouville eigenvalue problems , 2014, J. Comput. Phys..
[10] Agnieszka B. Malinowska,et al. Introduction to the Fractional Calculus of Variations , 2012 .
[11] N. Ford,et al. Analysis of Fractional Differential Equations , 2002 .
[12] Om P. Agrawal,et al. A Numerical Scheme for a Class of Parametric Problem of Fractional Variational Calculus , 2011 .
[13] L. Bourdin,et al. Variational integrator for fractional Euler–Lagrange equations , 2011, 1103.0465.
[14] Riewe,et al. Nonconservative Lagrangian and Hamiltonian mechanics. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[15] F. Atkinson,et al. Multiparameter Eigenvalue Problems: Sturm-Liouville Theory , 2010 .
[16] H. Srivastava,et al. Theory and Applications of Fractional Differential Equations , 2006 .
[17] Laplace transform solution of the problem of time-fractional heat conduction in a two-layered slab , 2015 .
[18] Y. Povstenko,et al. The Dirichlet problem for the time-fractional advection-diffusion equation in a line segment , 2016, Boundary Value Problems.
[19] Numerical solution of non-homogenous fractional oscillator equation in integral form , 2015 .
[20] I. Podlubny. Fractional differential equations , 1998 .
[21] Mariusz Ciesielski,et al. Numerical solution of fractional Sturm-Liouville equation in integral form , 2014, 1405.2630.
[22] Mariusz Ciesielski,et al. Fractional oscillator equation - Transformation into integral equation and numerical solution , 2015, Appl. Math. Comput..
[23] Malgorzata Klimek,et al. Regular Sturm-Liouville Problem with Riemann-Liouville Derivatives of Order in (1, 2): Discrete Spectrum, Solutions and Applications , 2014, RRNR.
[24] Qasem M. Al-Mdallal,et al. An efficient method for solving fractional Sturm–Liouville problems , 2009 .
[25] Regular fractional Sturm-Liouville problem with discrete spectrum: Solutions and applications , 2014, ICFDA'14 International Conference on Fractional Differentiation and Its Applications 2014.
[26] The Dirichlet problem for the time-fractional advection-diffusion equation in a half-space , 2015 .
[27] A. Malinowska,et al. Applications of the fractional Sturm-Liouville problem to the space-time fractional diffusion in a finite domain , 2016 .
[28] Om Prakash Agrawal,et al. Fractional Sturm-Liouville problem , 2013, Comput. Math. Appl..