Genomic Epidemiology of MBL-Producing Pseudomonas putida Group Isolates in Poland

[1]  Krishna N Das,et al.  Pseudomonas , 2022, Springer US.

[2]  David A. Baltrus,et al.  What makes a megaplasmid? , 2021, Philosophical Transactions of the Royal Society B.

[3]  A. Viale,et al.  Pseudomonas putida group species as reservoirs of mobilizable Tn402-like class 1 integrons carrying blaVIM-2 metallo-β-lactamase genes. , 2021, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[4]  Jan P. Meier-Kolthoff,et al.  TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes , 2021, Nucleic Acids Res..

[5]  G. Franco,et al.  Phylogenetic analysis and population structure of Pseudomonas alloputida. , 2021, Genomics.

[6]  P. Vandamme,et al.  The Ever-Expanding Pseudomonas Genus: Description of 43 New Species and Partition of the Pseudomonas putida Group , 2021, Microorganisms.

[7]  W. Hryniewicz,et al.  Molecular and genomic epidemiology of VIM/IMP-like metallo-β-lactamase-producing Pseudomonas aeruginosa genotypes in Poland. , 2021, The Journal of antimicrobial chemotherapy.

[8]  D. Haft,et al.  AMRFinderPlus and the Reference Gene Catalog facilitate examination of the genomic links among antimicrobial resistance, stress response, and virulence , 2021, Scientific Reports.

[9]  P. Urbanowicz,et al.  Epidemic Territorial Spread of IncP-2-Type VIM-2 Carbapenemase-Encoding Megaplasmids in Nosocomial Pseudomonas aeruginosa Populations , 2021, Antimicrobial Agents and Chemotherapy.

[10]  T. Kirikae,et al.  Emergence of clinical isolates of Pseudomonas asiatica and Pseudomonas monteilii from Japan harbouring an acquired gene encoding a carbapenemase VIM-2. , 2020, Journal of medical microbiology.

[11]  T. Kirikae,et al.  Emergence and spread of VIM-type metallo-β-lactamase-producing Pseudomonas aeruginosa clinical isolates in Japan. , 2020, Journal of global antimicrobial resistance.

[12]  T. Kirikae,et al.  Genome analysis-based reclassification of Pseudomonas fuscovaginae and Pseudomonas shirazica as later heterotypic synonyms of Pseudomonas asplenii and Pseudomonas asiatica, respectively. , 2020, International journal of systematic and evolutionary microbiology.

[13]  Ziyong Sun,et al.  Risk factors and antimicrobial resistance profiles of Pseudomonas putida infection in Central China, 2010–2017 , 2019, Medicine.

[14]  T. Miyoshi‐Akiyama,et al.  A multilocus sequence typing scheme of Pseudomonas putida for clinical and environmental isolates , 2019, Scientific Reports.

[15]  A. Oliver,et al.  Epidemiology and Treatment of Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas aeruginosa Infections , 2019, Clinical Microbiology Reviews.

[16]  V. di Pilato,et al.  Identification of a Novel Plasmid Lineage Associated With the Dissemination of Metallo-β-Lactamase Genes Among Pseudomonads , 2019, Front. Microbiol..

[17]  C. Prigent-Combaret,et al.  Genomic, phylogenetic and catabolic re-assessment of the Pseudomonas putida clade supports the delineation of Pseudomonas alloputida sp. nov., Pseudomonas inefficax sp. nov., Pseudomonas persica sp. nov., and Pseudomonas shirazica sp. nov. , 2019, Systematic and applied microbiology.

[18]  T. Kirikae,et al.  Emergence of Carbapenem-Resistant Pseudomonas asiatica Producing NDM-1 and VIM-2 Metallo-β-Lactamases in Myanmar , 2019, Antimicrobial Agents and Chemotherapy.

[19]  L. Peixe,et al.  Antibiotic resistance in Pseudomonas aeruginosa - Mechanisms, epidemiology and evolution. , 2019, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy.

[20]  J. Zahar,et al.  Identification of Diverse Integron and Plasmid Structures Carrying a Novel Carbapenemase Among Pseudomonas Species , 2019, Front. Microbiol..

[21]  A. Phillippy,et al.  High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries , 2018, Nature Communications.

[22]  W. Hryniewicz,et al.  VIM/IMP carbapenemase-producing Enterobacteriaceae in Poland: epidemic Enterobacter hormaechei and Klebsiella oxytoca lineages , 2018, The Journal of antimicrobial chemotherapy.

[23]  Min-Jeong Park,et al.  Molecular Characterization of Pseudomonas putida Group Isolates Carrying blaVIM-2 Disseminated in a University Hospital in Korea. , 2018, Microbial drug resistance.

[24]  D. Bezdan,et al.  Genomic characterisation of clinical and environmental Pseudomonas putida group strains and determination of their role in the transfer of antimicrobial resistance genes to Pseudomonas aeruginosa , 2017, BMC Genomics.

[25]  R. MacLean,et al.  Sequencing of plasmids pAMBL1 and pAMBL2 from Pseudomonas aeruginosa reveals a blaVIM-1 amplification causing high-level carbapenem resistance. , 2015, The Journal of antimicrobial chemotherapy.

[26]  Tom Slezak,et al.  kSNP3.0: SNP detection and phylogenetic analysis of genomes without genome alignment or reference genome , 2015, Bioinform..

[27]  J. Ramos,et al.  Analysis of the pathogenic potential of nosocomial Pseudomonas putida strains , 2015, Front. Microbiol..

[28]  P. Nordmann,et al.  Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: Mechanisms and epidemiology. , 2015, International journal of antimicrobial agents.

[29]  J. Lalucat,et al.  Phylogenomics and systematics in Pseudomonas , 2015, Front. Microbiol..

[30]  J. Vila,et al.  Isolation of VIM-2-Producing Pseudomonas monteilii Clinical Strains Disseminated in a Tertiary Hospital in Northern Spain , 2014, Antimicrobial Agents and Chemotherapy.

[31]  J. Ramos,et al.  Antibiotic Resistance Determinants in a Pseudomonas putida Strain Isolated from a Hospital , 2014, PloS one.

[32]  A. Oliver,et al.  First detection in Europe of the metallo-β-lactamase IMP-15 in clinical strains of Pseudomonas putida and Pseudomonas aeruginosa. , 2013, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[33]  I. Kosheleva,et al.  Structure of replication initiation region in Pseudomonas IncP-7 streptomycin resistance plasmid Rms148 , 2012, Molecular Biology.

[34]  O. Kiselev,et al.  Molecular-biological characteristics of rubella virus strains isolated in St. Petersburg , 2012, Molecular Biology.

[35]  Sergey I. Nikolenko,et al.  SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing , 2012, J. Comput. Biol..

[36]  M. Falagas,et al.  Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. , 2012, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[37]  A. Oliver,et al.  Environmental Microbiota Represents a Natural Reservoir for Dissemination of Clinically Relevant Metallo-β-Lactamases , 2011, Antimicrobial Agents and Chemotherapy.

[38]  P. Nordmann,et al.  Multiplex PCR for detection of acquired carbapenemase genes. , 2011, Diagnostic microbiology and infectious disease.

[39]  M. Asensi,et al.  IMP-16 in Pseudomonas putida and Pseudomonas stutzeri: potential reservoirs of multidrug resistance. , 2010, Journal of medical microbiology.

[40]  A. Oliver,et al.  Metallo-beta-lactamase-producing Pseudomonas putida as a reservoir of multidrug resistance elements that can be transferred to successful Pseudomonas aeruginosa clones. , 2010, The Journal of antimicrobial chemotherapy.

[41]  António Correia,et al.  INTEGRALL: a database and search engine for integrons, integrases and gene cassettes , 2009, Bioinform..

[42]  M. Toleman,et al.  Emergence and persistence of integron structures harbouring VIM genes in the Children's Memorial Health Institute, Warsaw, Poland, 1998-2006. , 2008, The Journal of antimicrobial chemotherapy.

[43]  L. Bingle,et al.  Diversity of IncP-9 plasmids of Pseudomonas , 2008, Microbiology.

[44]  W. Hryniewicz,et al.  Molecular Epidemiology of Acquired-Metallo-β-Lactamase-Producing Bacteria in Poland , 2006, Antimicrobial Agents and Chemotherapy.

[45]  Timothy R. Walsh,et al.  Metallo-β-Lactamases: the Quiet before the Storm? , 2005, Clinical Microbiology Reviews.

[46]  K. Timmis,et al.  Insights into the genomic basis of niche specificity of Pseudomonas putida KT2440. , 2004, Environmental microbiology.

[47]  M. Füzi,et al.  Isolation of an Integron-Borne blaVIM-4 Type Metallo-β-Lactamase Gene from a Carbapenem-Resistant Pseudomonas aeruginosa Clinical Isolate in Hungary , 2004, Antimicrobial Agents and Chemotherapy.

[48]  Ronald N. Jones,et al.  Pseudomonas aeruginosa strains harbouring an unusual blaVIM-4 gene cassette isolated from hospitalized children in Poland (1998-2001). , 2004, The Journal of antimicrobial chemotherapy.

[49]  Y. Tselentis,et al.  Spread of blaVIM-1-producing e. coli in a university hospital in Greece. Genetic analysis of the integron carrying the blaVIM-1 metallo-β-lactamase gene , 2004 .

[50]  G. P. Harding,et al.  A general method for detecting and sizing large plasmids. , 1995, Analytical biochemistry.

[51]  H. Hasman,et al.  PlasmidFinder and In Silico pMLST: Identification and Typing of Plasmid Replicons in Whole-Genome Sequencing (WGS). , 2020, Methods in molecular biology.

[52]  H. Yotsuyanagi,et al.  Pseudomonas putida bacteremia in adult patients: five case reports and a review of the literature , 2011, Journal of infection and chemotherapy : official journal of the Japan Society of Chemotherapy.

[53]  J. Bartlett,et al.  Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. , 2009, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[54]  Christopher M Thomas,et al.  Plasmids of the Genus Pseudomonas , 2004 .