Genomic Epidemiology of MBL-Producing Pseudomonas putida Group Isolates in Poland
暂无分享,去创建一个
W. Hryniewicz | P. Urbanowicz | M. Gniadkowski | R. Izdebski | E. Literacka | Marta Biedrzycka | M. Biedrzycka
[1] Krishna N Das,et al. Pseudomonas , 2022, Springer US.
[2] David A. Baltrus,et al. What makes a megaplasmid? , 2021, Philosophical Transactions of the Royal Society B.
[3] A. Viale,et al. Pseudomonas putida group species as reservoirs of mobilizable Tn402-like class 1 integrons carrying blaVIM-2 metallo-β-lactamase genes. , 2021, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.
[4] Jan P. Meier-Kolthoff,et al. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes , 2021, Nucleic Acids Res..
[5] G. Franco,et al. Phylogenetic analysis and population structure of Pseudomonas alloputida. , 2021, Genomics.
[6] P. Vandamme,et al. The Ever-Expanding Pseudomonas Genus: Description of 43 New Species and Partition of the Pseudomonas putida Group , 2021, Microorganisms.
[7] W. Hryniewicz,et al. Molecular and genomic epidemiology of VIM/IMP-like metallo-β-lactamase-producing Pseudomonas aeruginosa genotypes in Poland. , 2021, The Journal of antimicrobial chemotherapy.
[8] D. Haft,et al. AMRFinderPlus and the Reference Gene Catalog facilitate examination of the genomic links among antimicrobial resistance, stress response, and virulence , 2021, Scientific Reports.
[9] P. Urbanowicz,et al. Epidemic Territorial Spread of IncP-2-Type VIM-2 Carbapenemase-Encoding Megaplasmids in Nosocomial Pseudomonas aeruginosa Populations , 2021, Antimicrobial Agents and Chemotherapy.
[10] T. Kirikae,et al. Emergence of clinical isolates of Pseudomonas asiatica and Pseudomonas monteilii from Japan harbouring an acquired gene encoding a carbapenemase VIM-2. , 2020, Journal of medical microbiology.
[11] T. Kirikae,et al. Emergence and spread of VIM-type metallo-β-lactamase-producing Pseudomonas aeruginosa clinical isolates in Japan. , 2020, Journal of global antimicrobial resistance.
[12] T. Kirikae,et al. Genome analysis-based reclassification of Pseudomonas fuscovaginae and Pseudomonas shirazica as later heterotypic synonyms of Pseudomonas asplenii and Pseudomonas asiatica, respectively. , 2020, International journal of systematic and evolutionary microbiology.
[13] Ziyong Sun,et al. Risk factors and antimicrobial resistance profiles of Pseudomonas putida infection in Central China, 2010–2017 , 2019, Medicine.
[14] T. Miyoshi‐Akiyama,et al. A multilocus sequence typing scheme of Pseudomonas putida for clinical and environmental isolates , 2019, Scientific Reports.
[15] A. Oliver,et al. Epidemiology and Treatment of Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas aeruginosa Infections , 2019, Clinical Microbiology Reviews.
[16] V. di Pilato,et al. Identification of a Novel Plasmid Lineage Associated With the Dissemination of Metallo-β-Lactamase Genes Among Pseudomonads , 2019, Front. Microbiol..
[17] C. Prigent-Combaret,et al. Genomic, phylogenetic and catabolic re-assessment of the Pseudomonas putida clade supports the delineation of Pseudomonas alloputida sp. nov., Pseudomonas inefficax sp. nov., Pseudomonas persica sp. nov., and Pseudomonas shirazica sp. nov. , 2019, Systematic and applied microbiology.
[18] T. Kirikae,et al. Emergence of Carbapenem-Resistant Pseudomonas asiatica Producing NDM-1 and VIM-2 Metallo-β-Lactamases in Myanmar , 2019, Antimicrobial Agents and Chemotherapy.
[19] L. Peixe,et al. Antibiotic resistance in Pseudomonas aeruginosa - Mechanisms, epidemiology and evolution. , 2019, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy.
[20] J. Zahar,et al. Identification of Diverse Integron and Plasmid Structures Carrying a Novel Carbapenemase Among Pseudomonas Species , 2019, Front. Microbiol..
[21] A. Phillippy,et al. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries , 2018, Nature Communications.
[22] W. Hryniewicz,et al. VIM/IMP carbapenemase-producing Enterobacteriaceae in Poland: epidemic Enterobacter hormaechei and Klebsiella oxytoca lineages , 2018, The Journal of antimicrobial chemotherapy.
[23] Min-Jeong Park,et al. Molecular Characterization of Pseudomonas putida Group Isolates Carrying blaVIM-2 Disseminated in a University Hospital in Korea. , 2018, Microbial drug resistance.
[24] D. Bezdan,et al. Genomic characterisation of clinical and environmental Pseudomonas putida group strains and determination of their role in the transfer of antimicrobial resistance genes to Pseudomonas aeruginosa , 2017, BMC Genomics.
[25] R. MacLean,et al. Sequencing of plasmids pAMBL1 and pAMBL2 from Pseudomonas aeruginosa reveals a blaVIM-1 amplification causing high-level carbapenem resistance. , 2015, The Journal of antimicrobial chemotherapy.
[26] Tom Slezak,et al. kSNP3.0: SNP detection and phylogenetic analysis of genomes without genome alignment or reference genome , 2015, Bioinform..
[27] J. Ramos,et al. Analysis of the pathogenic potential of nosocomial Pseudomonas putida strains , 2015, Front. Microbiol..
[28] P. Nordmann,et al. Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: Mechanisms and epidemiology. , 2015, International journal of antimicrobial agents.
[29] J. Lalucat,et al. Phylogenomics and systematics in Pseudomonas , 2015, Front. Microbiol..
[30] J. Vila,et al. Isolation of VIM-2-Producing Pseudomonas monteilii Clinical Strains Disseminated in a Tertiary Hospital in Northern Spain , 2014, Antimicrobial Agents and Chemotherapy.
[31] J. Ramos,et al. Antibiotic Resistance Determinants in a Pseudomonas putida Strain Isolated from a Hospital , 2014, PloS one.
[32] A. Oliver,et al. First detection in Europe of the metallo-β-lactamase IMP-15 in clinical strains of Pseudomonas putida and Pseudomonas aeruginosa. , 2013, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.
[33] I. Kosheleva,et al. Structure of replication initiation region in Pseudomonas IncP-7 streptomycin resistance plasmid Rms148 , 2012, Molecular Biology.
[34] O. Kiselev,et al. Molecular-biological characteristics of rubella virus strains isolated in St. Petersburg , 2012, Molecular Biology.
[35] Sergey I. Nikolenko,et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing , 2012, J. Comput. Biol..
[36] M. Falagas,et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. , 2012, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.
[37] A. Oliver,et al. Environmental Microbiota Represents a Natural Reservoir for Dissemination of Clinically Relevant Metallo-β-Lactamases , 2011, Antimicrobial Agents and Chemotherapy.
[38] P. Nordmann,et al. Multiplex PCR for detection of acquired carbapenemase genes. , 2011, Diagnostic microbiology and infectious disease.
[39] M. Asensi,et al. IMP-16 in Pseudomonas putida and Pseudomonas stutzeri: potential reservoirs of multidrug resistance. , 2010, Journal of medical microbiology.
[40] A. Oliver,et al. Metallo-beta-lactamase-producing Pseudomonas putida as a reservoir of multidrug resistance elements that can be transferred to successful Pseudomonas aeruginosa clones. , 2010, The Journal of antimicrobial chemotherapy.
[41] António Correia,et al. INTEGRALL: a database and search engine for integrons, integrases and gene cassettes , 2009, Bioinform..
[42] M. Toleman,et al. Emergence and persistence of integron structures harbouring VIM genes in the Children's Memorial Health Institute, Warsaw, Poland, 1998-2006. , 2008, The Journal of antimicrobial chemotherapy.
[43] L. Bingle,et al. Diversity of IncP-9 plasmids of Pseudomonas , 2008, Microbiology.
[44] W. Hryniewicz,et al. Molecular Epidemiology of Acquired-Metallo-β-Lactamase-Producing Bacteria in Poland , 2006, Antimicrobial Agents and Chemotherapy.
[45] Timothy R. Walsh,et al. Metallo-β-Lactamases: the Quiet before the Storm? , 2005, Clinical Microbiology Reviews.
[46] K. Timmis,et al. Insights into the genomic basis of niche specificity of Pseudomonas putida KT2440. , 2004, Environmental microbiology.
[47] M. Füzi,et al. Isolation of an Integron-Borne blaVIM-4 Type Metallo-β-Lactamase Gene from a Carbapenem-Resistant Pseudomonas aeruginosa Clinical Isolate in Hungary , 2004, Antimicrobial Agents and Chemotherapy.
[48] Ronald N. Jones,et al. Pseudomonas aeruginosa strains harbouring an unusual blaVIM-4 gene cassette isolated from hospitalized children in Poland (1998-2001). , 2004, The Journal of antimicrobial chemotherapy.
[49] Y. Tselentis,et al. Spread of blaVIM-1-producing e. coli in a university hospital in Greece. Genetic analysis of the integron carrying the blaVIM-1 metallo-β-lactamase gene , 2004 .
[50] G. P. Harding,et al. A general method for detecting and sizing large plasmids. , 1995, Analytical biochemistry.
[51] H. Hasman,et al. PlasmidFinder and In Silico pMLST: Identification and Typing of Plasmid Replicons in Whole-Genome Sequencing (WGS). , 2020, Methods in molecular biology.
[52] H. Yotsuyanagi,et al. Pseudomonas putida bacteremia in adult patients: five case reports and a review of the literature , 2011, Journal of infection and chemotherapy : official journal of the Japan Society of Chemotherapy.
[53] J. Bartlett,et al. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. , 2009, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.
[54] Christopher M Thomas,et al. Plasmids of the Genus Pseudomonas , 2004 .