Strained Si MOSFETs on relaxed SiGe platforms: performance and challenges
暂无分享,去创建一个
Sarah H. Olsen | Anthony O'Neill | Sanatan Chattopadhyay | A. O'Neill | S. Chattopadhyay | S. Olsen | Kelvin S. K. Kwa | L. D. Driscoll | K.S.K. Kwa | L. Driscoll
[1] A. O'Neill,et al. Impact of virtual substrate growth on high performance strained Si/SiGe double quantum well metal-oxide-semiconductor field-effect transistors , 2003 .
[2] Douglas J. Paul,et al. High-performance nMOSFETs using a novel strained Si/SiGe CMOS architecture , 2003 .
[3] D. Harame,et al. SiGe-channel heterojunction p-MOSFET's , 1994 .
[4] D. Antoniadis,et al. Carrier mobilities and process stability of strained Si n- and p-MOSFETs on SiGe virtual substrates , 2001 .
[5] D. Vasileska,et al. Transport in the surface channel of strained Si on a relaxed Si1−xGex substrate , 1997 .
[6] Emmanuel Augendre,et al. Elevated source/drain by sacrificial selective epitaxy for high performance deep submicron CMOS: Process window versus complexity , 2000 .
[7] R. People,et al. Physics and applications of Ge x Si 1-x /Si strained-layer heterostructures , 1986 .
[8] S. Ozawa,et al. Compatibility of NiSi in the self-aligned suicide process for deep submicrometer devices , 1995 .
[9] Shi-Li Zhang,et al. Morphological and phase stability of nickel–germanosilicide on Si1−xGex under thermal stress , 2002 .
[10] A. Chin,et al. Thickness dependent gate oxide quality of thin thermal oxide grown on high temperature formed SiGe , 2000, IEEE Electron Device Letters.
[12] S. Scalese,et al. Rapid thermal oxidation of epitaxial SiGe thin films , 2002 .
[13] D. Antoniadis,et al. Hole mobility enhancements and alloy scattering-limited mobility in tensile strained Si/SiGe surface channel metal-oxide-semiconductor field-effect transistors , 2002 .
[14] J. Hersener,et al. Needs of Low Thermal Budget Processing in SiGe Technology , 1995 .
[15] T. Vogelsang,et al. Electron transport in strained Si layers on Si1−xGex substrates , 1993 .
[16] K. Rim,et al. Fabrication and analysis of deep submicron strained-Si n-MOSFET's , 2000 .
[17] Pooi See Lee,et al. Thermal reaction of nickel and Si0.75Ge0.25 alloy , 2002 .
[18] D. Antoniadis,et al. Deep submicron CMOS based on silicon germanium technology , 1996 .
[19] A. O'Neill,et al. A model for capacitance reconstruction from measured lossy MOS capacitance–voltage characteristics , 2003 .
[20] C. Detavernier,et al. CoSi2 nucleation in the presence of Ge , 2001 .
[21] S. Laux,et al. Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys , 1996 .
[22] Bernard S. Meyerson,et al. Room‐temperature electron mobility in strained Si/SiGe heterostructures , 1993 .
[23] Dimitri A. Antoniadis,et al. Interfacial reactions of Ni on Si1−xGex (x=0.2, 0.3) at low temperature by rapid thermal annealing , 2002 .
[24] John D. Cressler,et al. Total dose effects on the shallow-trench isolation leakage current characteristics in a 0.35 /spl mu/m SiGe BiCMOS technology , 1999 .
[25] Steven E. Laux,et al. Charge transfer and low‐temperature electron mobility in a strained Si layer in relaxed Si1−xGex , 1992 .
[26] P. Vogl,et al. Subband structure and mobility of two-dimensional holes in strained Si/SiGe MOSFET’s , 1998 .
[27] J. W. Matthews,et al. Defects in epitaxial multilayers: I. Misfit dislocations* , 1974 .
[28] Martin,et al. Theoretical calculations of heterojunction discontinuities in the Si/Ge system. , 1986, Physical review. B, Condensed matter.
[29] A. O'Neill,et al. C–V characterization of strained Si/SiGe multiple heterojunction capacitors as a tool for heterojunction MOSFET channel design , 2003 .
[30] Hiroshi Iwai,et al. Self-aligned nickel-mono-silicide technology for high-speed deep submicrometer logic CMOS ULSI , 1995 .
[31] S. B. Herner,et al. Low resistivity TiSi2 on narrow p+ polycrystalline silicon lines , 2002 .
[32] C. Maiti,et al. Strained-Si heterostructure field effect transistors , 1998 .
[33] Jung-Suk Goo,et al. Scalability of strained-Si nMOSFETs down to 25 nm gate length , 2003, IEEE Electron Device Letters.
[34] E. G. Chester,et al. Device and circuit performance of SiGe/Si MOSFETs , 2002 .
[35] Dimitri A. Antoniadis,et al. Hole mobility enhancements in strained Si/Si1-yGey p-type metal-oxide-semiconductor field-effect transistors grown on relaxed Si1-xGex (x , 2001 .
[36] Keith A. Jenkins,et al. Strained Si CMOS (SS CMOS) technology: Opportunities and challenges , 2003 .
[37] Kang L. Wang,et al. High-mobility p-channel metal-oxide-semiconductor field-effect transistor on strained Si , 1993 .
[38] J. A. López-Villanueva,et al. A Monte Carlo study on the electron‐transport properties of high‐performance strained‐Si on relaxed Si1−xGex channel MOSFETs , 1996 .
[39] M. Grimaldi,et al. Electrical resistivity and Hall coefficient of C49, C40, and C54 TiSi2 thin-film phases , 2002 .
[40] Friedrich Schäffler,et al. High-mobility Si and Ge structures , 1997 .
[41] E. H. Nicollian,et al. Mos (Metal Oxide Semiconductor) Physics and Technology , 1982 .
[42] D. K. Nayak,et al. Low‐field hole mobility of strained Si on (100) Si1−xGex substrate , 1994 .
[43] James S. Nakos,et al. Comparison of transformation to low-resistivity phase and agglomeration of TiSi/sub 2/ and CoSi/sub 2/ , 1991 .
[44] H. Kibbel,et al. The n-channel SiGe/Si modulation-doped field-effect transistor , 1986, IEEE Transactions on Electron Devices.