Strained Si MOSFETs on relaxed SiGe platforms: performance and challenges

Abstract The purpose of this article is to briefly review the recent progress in terms of mobility and drive current enhancements achieved in strained-Si n- and p-metal oxide semiconductor field effect transistors (MOSFETs). Strained Si MOSFETs are potential candidates for future high performance CMOS applications, and the electron mobility enhancement factor over 3 and saturation drain current enhancement over 90% compared to bulk Si CMOS have been reported for surface channel device. The hole mobility enhancement factor over 2 has been achieved for the surface channel strained Si device while that for the buried channel compressively strained SiGe is reported to be over 5. Techniques for designing channel architectures of heterostructure CMOS (HCMOS) devices are discussed. The challenges in device design, thermal budget optimisation, SALICIDE issues and integration of different modules are addressed.

[1]  A. O'Neill,et al.  Impact of virtual substrate growth on high performance strained Si/SiGe double quantum well metal-oxide-semiconductor field-effect transistors , 2003 .

[2]  Douglas J. Paul,et al.  High-performance nMOSFETs using a novel strained Si/SiGe CMOS architecture , 2003 .

[3]  D. Harame,et al.  SiGe-channel heterojunction p-MOSFET's , 1994 .

[4]  D. Antoniadis,et al.  Carrier mobilities and process stability of strained Si n- and p-MOSFETs on SiGe virtual substrates , 2001 .

[5]  D. Vasileska,et al.  Transport in the surface channel of strained Si on a relaxed Si1−xGex substrate , 1997 .

[6]  Emmanuel Augendre,et al.  Elevated source/drain by sacrificial selective epitaxy for high performance deep submicron CMOS: Process window versus complexity , 2000 .

[7]  R. People,et al.  Physics and applications of Ge x Si 1-x /Si strained-layer heterostructures , 1986 .

[8]  S. Ozawa,et al.  Compatibility of NiSi in the self-aligned suicide process for deep submicrometer devices , 1995 .

[9]  Shi-Li Zhang,et al.  Morphological and phase stability of nickel–germanosilicide on Si1−xGex under thermal stress , 2002 .

[10]  A. Chin,et al.  Thickness dependent gate oxide quality of thin thermal oxide grown on high temperature formed SiGe , 2000, IEEE Electron Device Letters.

[12]  S. Scalese,et al.  Rapid thermal oxidation of epitaxial SiGe thin films , 2002 .

[13]  D. Antoniadis,et al.  Hole mobility enhancements and alloy scattering-limited mobility in tensile strained Si/SiGe surface channel metal-oxide-semiconductor field-effect transistors , 2002 .

[14]  J. Hersener,et al.  Needs of Low Thermal Budget Processing in SiGe Technology , 1995 .

[15]  T. Vogelsang,et al.  Electron transport in strained Si layers on Si1−xGex substrates , 1993 .

[16]  K. Rim,et al.  Fabrication and analysis of deep submicron strained-Si n-MOSFET's , 2000 .

[17]  Pooi See Lee,et al.  Thermal reaction of nickel and Si0.75Ge0.25 alloy , 2002 .

[18]  D. Antoniadis,et al.  Deep submicron CMOS based on silicon germanium technology , 1996 .

[19]  A. O'Neill,et al.  A model for capacitance reconstruction from measured lossy MOS capacitance–voltage characteristics , 2003 .

[20]  C. Detavernier,et al.  CoSi2 nucleation in the presence of Ge , 2001 .

[21]  S. Laux,et al.  Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys , 1996 .

[22]  Bernard S. Meyerson,et al.  Room‐temperature electron mobility in strained Si/SiGe heterostructures , 1993 .

[23]  Dimitri A. Antoniadis,et al.  Interfacial reactions of Ni on Si1−xGex (x=0.2, 0.3) at low temperature by rapid thermal annealing , 2002 .

[24]  John D. Cressler,et al.  Total dose effects on the shallow-trench isolation leakage current characteristics in a 0.35 /spl mu/m SiGe BiCMOS technology , 1999 .

[25]  Steven E. Laux,et al.  Charge transfer and low‐temperature electron mobility in a strained Si layer in relaxed Si1−xGex , 1992 .

[26]  P. Vogl,et al.  Subband structure and mobility of two-dimensional holes in strained Si/SiGe MOSFET’s , 1998 .

[27]  J. W. Matthews,et al.  Defects in epitaxial multilayers: I. Misfit dislocations* , 1974 .

[28]  Martin,et al.  Theoretical calculations of heterojunction discontinuities in the Si/Ge system. , 1986, Physical review. B, Condensed matter.

[29]  A. O'Neill,et al.  C–V characterization of strained Si/SiGe multiple heterojunction capacitors as a tool for heterojunction MOSFET channel design , 2003 .

[30]  Hiroshi Iwai,et al.  Self-aligned nickel-mono-silicide technology for high-speed deep submicrometer logic CMOS ULSI , 1995 .

[31]  S. B. Herner,et al.  Low resistivity TiSi2 on narrow p+ polycrystalline silicon lines , 2002 .

[32]  C. Maiti,et al.  Strained-Si heterostructure field effect transistors , 1998 .

[33]  Jung-Suk Goo,et al.  Scalability of strained-Si nMOSFETs down to 25 nm gate length , 2003, IEEE Electron Device Letters.

[34]  E. G. Chester,et al.  Device and circuit performance of SiGe/Si MOSFETs , 2002 .

[35]  Dimitri A. Antoniadis,et al.  Hole mobility enhancements in strained Si/Si1-yGey p-type metal-oxide-semiconductor field-effect transistors grown on relaxed Si1-xGex (x , 2001 .

[36]  Keith A. Jenkins,et al.  Strained Si CMOS (SS CMOS) technology: Opportunities and challenges , 2003 .

[37]  Kang L. Wang,et al.  High-mobility p-channel metal-oxide-semiconductor field-effect transistor on strained Si , 1993 .

[38]  J. A. López-Villanueva,et al.  A Monte Carlo study on the electron‐transport properties of high‐performance strained‐Si on relaxed Si1−xGex channel MOSFETs , 1996 .

[39]  M. Grimaldi,et al.  Electrical resistivity and Hall coefficient of C49, C40, and C54 TiSi2 thin-film phases , 2002 .

[40]  Friedrich Schäffler,et al.  High-mobility Si and Ge structures , 1997 .

[41]  E. H. Nicollian,et al.  Mos (Metal Oxide Semiconductor) Physics and Technology , 1982 .

[42]  D. K. Nayak,et al.  Low‐field hole mobility of strained Si on (100) Si1−xGex substrate , 1994 .

[43]  James S. Nakos,et al.  Comparison of transformation to low-resistivity phase and agglomeration of TiSi/sub 2/ and CoSi/sub 2/ , 1991 .

[44]  H. Kibbel,et al.  The n-channel SiGe/Si modulation-doped field-effect transistor , 1986, IEEE Transactions on Electron Devices.