Double scaling in tensor models with a quartic interaction

[1]  R. Gurau The 1/N Expansion of Tensor Models Beyond Perturbation Theory , 2013, 1304.2666.

[2]  H. Grosse,et al.  Self-Dual Noncommutative $${\phi^4}$$ϕ4 -Theory in Four Dimensions is a Non-Perturbatively Solvable and Non-Trivial Quantum Field Theory , 2012, 1205.0465.

[3]  D. O. Samary,et al.  3D Tensor Field Theory: Renormalization and One-Loop β-Functions , 2013 .

[4]  Adrian Tanasa,et al.  Combinatorial Hopf algebra for the Ben Geloun-Rivasseau tensor field theory , 2013, 1306.1022.

[5]  D. Oriti Disappearance and emergence of space and time in quantum gravity , 2013, 1302.2849.

[6]  V. Rivasseau,et al.  The 1/N Expansion of Multi-Orientable Random Tensor Models , 2013, Annales Henri Poincaré.

[7]  V. Bonzom New 1/N expansions in random tensor models , 2012, 1211.1657.

[8]  V. Bonzom Revisiting random tensor models at large N via the Schwinger-Dyson equations , 2012, 1208.6216.

[9]  E. Livine,et al.  Some classes of renormalizable tensor models , 2012, 1207.0416.

[10]  M. Smerlak,et al.  Universality in p-spin glasses with correlated disorder , 2012, 1206.5539.

[11]  V. Bonzom Multi-critical tensor models and hard dimers on spherical random lattices , 2012, 1201.1931.

[12]  J. B. Geloun Two- and four-loop β-functions of rank-4 renormalizable tensor field theories , 2012, 1205.5513.

[13]  H. Erbin,et al.  Coupling of hard dimers to dynamical lattices via random tensors , 2012, 1204.3798.

[14]  R. Gurau The Schwinger Dyson equations and the algebra of constraints of random tensor models at all orders , 2012, 1203.4965.

[15]  Valentin Bonzom,et al.  Random tensor models in the large N limit: Uncoloring the colored tensor models , 2012, 1202.3637.

[16]  J. Ryan,et al.  Colored Tensor Models - a Review , 2011, 1109.4812.

[17]  V. Rivasseau,et al.  The Ising model on random lattices in arbitrary dimensions , 2011, Physics Letters B.

[18]  D. Benedetti,et al.  Phase transition in dually weighted colored tensor models , 2011, 1108.5389.

[19]  J. Ryan TENSOR MODELS AND EMBEDDED RIEMANN SURFACES , 2011, 1104.5471.

[20]  V. Rivasseau,et al.  Constructive renormalization for Φ24 theory with loop vertex expansion , 2011, 1104.3443.

[21]  Razvan Gurau,et al.  The Complete 1/N Expansion of Colored Tensor Models in Arbitrary Dimension , 2011, 1102.5759.

[22]  Vincent Rivasseau,et al.  Quantum Gravity and Renormalization: The Tensor Track , 2011, 1112.5104.

[23]  Joseph Ben Geloun,et al.  A Renormalizable 4-Dimensional Tensor Field Theory , 2011, 1111.4997.

[24]  R. Gurau The Double Scaling Limit in Arbitrary Dimensions: A Toy Model , 2011, 1110.2460.

[25]  R. Gurau A generalization of the Virasoro algebra to arbitrary dimensions , 2011, 1105.6072.

[26]  Valentin Bonzom,et al.  Critical behavior of colored tensor models in the large N limit , 2011, 1105.3122.

[27]  Zhituo Wang Construction of 2-dimensional Grosse-Wulkenhaar Model , 2011 .

[28]  Vincent Rivasseau,et al.  The 1/N expansion of colored tensor models in arbitrary dimension , 2011, 1101.4182.

[29]  R. Gurau The 1/N Expansion of Colored Tensor Models , 2010, 1011.2726.

[30]  Razvan Gurau,et al.  Colored Group Field Theory , 2009, 0907.2582.

[31]  R. Gurău,et al.  Lost in translation: topological singularities in group field theory , 2010, 1108.4966.

[32]  V. Rivasseau,et al.  Loop Vertex Expansion for Phi^2k Theory in Zero Dimension , 2010, 1003.1037.

[33]  J. Magnen,et al.  Bosonic colored group field theory , 2009, 0911.1719.

[34]  M. Smerlak,et al.  Scaling behavior of three-dimensional group field theory , 2009, 0906.5477.

[35]  Claus Kiefer,et al.  Modern Canonical Quantum General Relativity , 2008 .

[36]  V. Rivasseau,et al.  Constructive ϕ4 Field Theory without Tears , 2007, 0706.2457.

[37]  V. Rivasseau Constructive matrix theory , 2007, 0706.1224.

[38]  L. Freidel Group Field Theory: An Overview , 2005, hep-th/0505016.

[39]  A. Ashtekar,et al.  Background independent quantum gravity: A Status report , 2004, gr-qc/0404018.

[40]  H. Grosse,et al.  Renormalisation of ϕ4-Theory on Noncommutative ℝ4 in the Matrix Base , 2004, hep-th/0401128.

[41]  E. Álvarez,et al.  Quantum Gravity , 2004, gr-qc/0405107.

[42]  Gilles Schaeffer Conjugaison d'arbres et cartes combinatoires aléatoires , 1998 .

[43]  V. Rivasseau,et al.  Trees, forests and jungles: a botanical garden for cluster expansions , 1994, hep-th/9409094.

[44]  D. Boulatov A Model of three-dimensional lattice gravity , 1992, hep-th/9202074.

[45]  M. Gross Tensor models and simplicial quantum gravity in >2-D , 1992 .

[46]  Naoki Sasakura,et al.  TENSOR MODEL FOR GRAVITY AND ORIENTABILITY OF MANIFOLD , 1991 .

[47]  Bergfinnur Durhuus,et al.  THREE-DIMENSIONAL SIMPLICIAL QUANTUM GRAVITY AND GENERALIZED MATRIX MODELS , 1991 .

[48]  C. Saclay PHASES OF THE LARGE-N MATRIX MODEL AND NON-PERTURBATIVE EFFECTS IN 2D GRAVITY , 1991 .

[49]  S. Shenker,et al.  STRINGS IN LESS THAN ONE DIMENSION , 1990 .

[50]  É. Brézin,et al.  Exactly Solvable Field Theories of Closed Strings , 1990 .

[51]  D. Gross,et al.  Nonperturbative two-dimensional quantum gravity. , 1990, Physical review letters.

[52]  T. Kennedy,et al.  Mayer expansions and the Hamilton-Jacobi equation , 1987 .

[53]  V. Kazakov Bilocal Regularization of Models of Random Surfaces , 1985 .

[54]  F. David,et al.  A model of random surfaces with non-trivial critical behaviour , 1985 .

[55]  J. Glimm,et al.  Quantum Physics: A Functional Integral Point of View , 1981 .

[56]  Alan D. Sokal,et al.  An improvement of Watson’s theorem on Borel summability , 1980 .

[57]  Edward M. Wright,et al.  The number of connected sparsely edged graphs. II. Smooth graphs and blocks , 1978, J. Graph Theory.

[58]  G. Parisi,et al.  Planar diagrams , 1978 .

[59]  Edward M. Wright,et al.  The number of connected sparsely edged graphs , 1977, J. Graph Theory.

[60]  G. Hooft A Planar Diagram Theory for Strong Interactions , 1974 .

[61]  K. Hepp Théorie de la renormalisation , 1969 .

[62]  W. T. Tutte,et al.  A Census of Planar Triangulations , 1962, Canadian Journal of Mathematics.

[63]  J. Kruskal On the shortest spanning subtree of a graph and the traveling salesman problem , 1956 .