Double scaling in tensor models with a quartic interaction
暂无分享,去创建一个
[1] R. Gurau. The 1/N Expansion of Tensor Models Beyond Perturbation Theory , 2013, 1304.2666.
[2] H. Grosse,et al. Self-Dual Noncommutative $${\phi^4}$$ϕ4 -Theory in Four Dimensions is a Non-Perturbatively Solvable and Non-Trivial Quantum Field Theory , 2012, 1205.0465.
[3] D. O. Samary,et al. 3D Tensor Field Theory: Renormalization and One-Loop β-Functions , 2013 .
[4] Adrian Tanasa,et al. Combinatorial Hopf algebra for the Ben Geloun-Rivasseau tensor field theory , 2013, 1306.1022.
[5] D. Oriti. Disappearance and emergence of space and time in quantum gravity , 2013, 1302.2849.
[6] V. Rivasseau,et al. The 1/N Expansion of Multi-Orientable Random Tensor Models , 2013, Annales Henri Poincaré.
[7] V. Bonzom. New 1/N expansions in random tensor models , 2012, 1211.1657.
[8] V. Bonzom. Revisiting random tensor models at large N via the Schwinger-Dyson equations , 2012, 1208.6216.
[9] E. Livine,et al. Some classes of renormalizable tensor models , 2012, 1207.0416.
[10] M. Smerlak,et al. Universality in p-spin glasses with correlated disorder , 2012, 1206.5539.
[11] V. Bonzom. Multi-critical tensor models and hard dimers on spherical random lattices , 2012, 1201.1931.
[12] J. B. Geloun. Two- and four-loop β-functions of rank-4 renormalizable tensor field theories , 2012, 1205.5513.
[13] H. Erbin,et al. Coupling of hard dimers to dynamical lattices via random tensors , 2012, 1204.3798.
[14] R. Gurau. The Schwinger Dyson equations and the algebra of constraints of random tensor models at all orders , 2012, 1203.4965.
[15] Valentin Bonzom,et al. Random tensor models in the large N limit: Uncoloring the colored tensor models , 2012, 1202.3637.
[16] J. Ryan,et al. Colored Tensor Models - a Review , 2011, 1109.4812.
[17] V. Rivasseau,et al. The Ising model on random lattices in arbitrary dimensions , 2011, Physics Letters B.
[18] D. Benedetti,et al. Phase transition in dually weighted colored tensor models , 2011, 1108.5389.
[19] J. Ryan. TENSOR MODELS AND EMBEDDED RIEMANN SURFACES , 2011, 1104.5471.
[20] V. Rivasseau,et al. Constructive renormalization for Φ24 theory with loop vertex expansion , 2011, 1104.3443.
[21] Razvan Gurau,et al. The Complete 1/N Expansion of Colored Tensor Models in Arbitrary Dimension , 2011, 1102.5759.
[22] Vincent Rivasseau,et al. Quantum Gravity and Renormalization: The Tensor Track , 2011, 1112.5104.
[23] Joseph Ben Geloun,et al. A Renormalizable 4-Dimensional Tensor Field Theory , 2011, 1111.4997.
[24] R. Gurau. The Double Scaling Limit in Arbitrary Dimensions: A Toy Model , 2011, 1110.2460.
[25] R. Gurau. A generalization of the Virasoro algebra to arbitrary dimensions , 2011, 1105.6072.
[26] Valentin Bonzom,et al. Critical behavior of colored tensor models in the large N limit , 2011, 1105.3122.
[27] Zhituo Wang. Construction of 2-dimensional Grosse-Wulkenhaar Model , 2011 .
[28] Vincent Rivasseau,et al. The 1/N expansion of colored tensor models in arbitrary dimension , 2011, 1101.4182.
[29] R. Gurau. The 1/N Expansion of Colored Tensor Models , 2010, 1011.2726.
[30] Razvan Gurau,et al. Colored Group Field Theory , 2009, 0907.2582.
[31] R. Gurău,et al. Lost in translation: topological singularities in group field theory , 2010, 1108.4966.
[32] V. Rivasseau,et al. Loop Vertex Expansion for Phi^2k Theory in Zero Dimension , 2010, 1003.1037.
[33] J. Magnen,et al. Bosonic colored group field theory , 2009, 0911.1719.
[34] M. Smerlak,et al. Scaling behavior of three-dimensional group field theory , 2009, 0906.5477.
[35] Claus Kiefer,et al. Modern Canonical Quantum General Relativity , 2008 .
[36] V. Rivasseau,et al. Constructive ϕ4 Field Theory without Tears , 2007, 0706.2457.
[37] V. Rivasseau. Constructive matrix theory , 2007, 0706.1224.
[38] L. Freidel. Group Field Theory: An Overview , 2005, hep-th/0505016.
[39] A. Ashtekar,et al. Background independent quantum gravity: A Status report , 2004, gr-qc/0404018.
[40] H. Grosse,et al. Renormalisation of ϕ4-Theory on Noncommutative ℝ4 in the Matrix Base , 2004, hep-th/0401128.
[41] E. Álvarez,et al. Quantum Gravity , 2004, gr-qc/0405107.
[42] Gilles Schaeffer. Conjugaison d'arbres et cartes combinatoires aléatoires , 1998 .
[43] V. Rivasseau,et al. Trees, forests and jungles: a botanical garden for cluster expansions , 1994, hep-th/9409094.
[44] D. Boulatov. A Model of three-dimensional lattice gravity , 1992, hep-th/9202074.
[45] M. Gross. Tensor models and simplicial quantum gravity in >2-D , 1992 .
[46] Naoki Sasakura,et al. TENSOR MODEL FOR GRAVITY AND ORIENTABILITY OF MANIFOLD , 1991 .
[47] Bergfinnur Durhuus,et al. THREE-DIMENSIONAL SIMPLICIAL QUANTUM GRAVITY AND GENERALIZED MATRIX MODELS , 1991 .
[48] C. Saclay. PHASES OF THE LARGE-N MATRIX MODEL AND NON-PERTURBATIVE EFFECTS IN 2D GRAVITY , 1991 .
[49] S. Shenker,et al. STRINGS IN LESS THAN ONE DIMENSION , 1990 .
[50] É. Brézin,et al. Exactly Solvable Field Theories of Closed Strings , 1990 .
[51] D. Gross,et al. Nonperturbative two-dimensional quantum gravity. , 1990, Physical review letters.
[52] T. Kennedy,et al. Mayer expansions and the Hamilton-Jacobi equation , 1987 .
[53] V. Kazakov. Bilocal Regularization of Models of Random Surfaces , 1985 .
[54] F. David,et al. A model of random surfaces with non-trivial critical behaviour , 1985 .
[55] J. Glimm,et al. Quantum Physics: A Functional Integral Point of View , 1981 .
[56] Alan D. Sokal,et al. An improvement of Watson’s theorem on Borel summability , 1980 .
[57] Edward M. Wright,et al. The number of connected sparsely edged graphs. II. Smooth graphs and blocks , 1978, J. Graph Theory.
[58] G. Parisi,et al. Planar diagrams , 1978 .
[59] Edward M. Wright,et al. The number of connected sparsely edged graphs , 1977, J. Graph Theory.
[60] G. Hooft. A Planar Diagram Theory for Strong Interactions , 1974 .
[61] K. Hepp. Théorie de la renormalisation , 1969 .
[62] W. T. Tutte,et al. A Census of Planar Triangulations , 1962, Canadian Journal of Mathematics.
[63] J. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman problem , 1956 .