Micro Air Injection and Its Unsteady Response in a Low-Speed Axial Compressor

A new approach, steady micro air injection from the casing, is proposed to improve the stability of a three-stage low-speed axial compression system. Although the injection rate is designated to be only a few ten thousandth of the compressor flow rate, such an injection is able to trigger the unsteady response and thus lower the mass flow rate at stall for up to 5.83%. At the same time, it keeps the steady compressor characteristic with no injection unchanged. In order to verify that the compressor response is indeed unsteady, experiments at various injection configurations are performed, which include different injection angles, axial gaps between injector and blade leading edge, radial penetration of injector and the amount of injected air. Evidences of the unsteady response are further demonstrated through dynamic signal analysis using a wavelet-based method to show the behavior of early flow disturbances under the influence of injection. Numerical analyses performed at near stall condition show that the tip clearance vortices do response to the micro-injection, and thus delay the inception of stall.