Lie algebroids in classical mechanics and optimal control.
暂无分享,去创建一个
[1] J. Cortes,et al. Nonholonomic Lagrangian systems on Lie algebroids , 2005, math-ph/0512003.
[2] Classical field theory on Lie algebroids: Multisymplectic formalism , 2004, math/0411352.
[3] R. Abraham,et al. Manifolds, Tensor Analysis, and Applications , 1983 .
[4] W. Sarlet,et al. Lie algebroid structures and Lagrangian systems on affine bundles , 2002, math/0203178.
[5] Eduardo Martínez. Lagrangian Mechanics on Lie Algebroids , 2001 .
[6] J. Marsden,et al. Variational principles for Lie-Poisson and Hamilton-Poincaré equations , 2003 .
[8] Marius Crainic,et al. Integrability of Lie brackets , 2001 .
[9] Eduardo Martínez,et al. Reduction in optimal control theory , 2004 .
[10] Espaces variationnels et mécanique , 1962 .
[11] Eduardo Martinez. Classical field theory on Lie algebroids: variational aspects , 2004 .
[12] Jerrold E. Marsden,et al. Lagrangian Reduction by Stages , 2001 .
[13] D. Mart'in de Diego,et al. Discrete Lagrangian and Hamiltonian mechanics on Lie groupoids , 2005 .
[14] Eduardo Martínez,et al. Mechanical control systems on Lie algebroids , 2004, IMA J. Math. Control. Inf..
[15] J. Cariñena,et al. Lie Algebroid generalization of geometric mechanics , 2001 .
[16] Jorge Cortes,et al. A SURVEY OF LAGRANGIAN MECHANICS AND CONTROL ON LIE ALGEBROIDS AND GROUPOIDS , 2005 .
[17] Alan Weinstein,et al. Geometric Models for Noncommutative Algebras , 1999 .
[18] K. Mackenzie,et al. General theory of lie groupoids and lie algebroids , 2005 .
[19] Eduardo Mart ´ inez. REDUCTION IN OPTIMAL CONTROL THEORY , 2004 .