Lie algebroids in classical mechanics and optimal control.

We review some recent results on the theory of Lagrangian systems on Lie algebroids. In particular we consider the symplectic and variational formalism and we study reduction. Finally we also consider optimal control systems on Lie algebroids and we show how to reduce Pontryagin maximum principle.

[1]  J. Cortes,et al.  Nonholonomic Lagrangian systems on Lie algebroids , 2005, math-ph/0512003.

[2]  Classical field theory on Lie algebroids: Multisymplectic formalism , 2004, math/0411352.

[3]  R. Abraham,et al.  Manifolds, Tensor Analysis, and Applications , 1983 .

[4]  W. Sarlet,et al.  Lie algebroid structures and Lagrangian systems on affine bundles , 2002, math/0203178.

[5]  Eduardo Martínez Lagrangian Mechanics on Lie Algebroids , 2001 .

[6]  J. Marsden,et al.  Variational principles for Lie-Poisson and Hamilton-Poincaré equations , 2003 .

[8]  Marius Crainic,et al.  Integrability of Lie brackets , 2001 .

[9]  Eduardo Martínez,et al.  Reduction in optimal control theory , 2004 .

[10]  Espaces variationnels et mécanique , 1962 .

[11]  Eduardo Martinez Classical field theory on Lie algebroids: variational aspects , 2004 .

[12]  Jerrold E. Marsden,et al.  Lagrangian Reduction by Stages , 2001 .

[13]  D. Mart'in de Diego,et al.  Discrete Lagrangian and Hamiltonian mechanics on Lie groupoids , 2005 .

[14]  Eduardo Martínez,et al.  Mechanical control systems on Lie algebroids , 2004, IMA J. Math. Control. Inf..

[15]  J. Cariñena,et al.  Lie Algebroid generalization of geometric mechanics , 2001 .

[16]  Jorge Cortes,et al.  A SURVEY OF LAGRANGIAN MECHANICS AND CONTROL ON LIE ALGEBROIDS AND GROUPOIDS , 2005 .

[17]  Alan Weinstein,et al.  Geometric Models for Noncommutative Algebras , 1999 .

[18]  K. Mackenzie,et al.  General theory of lie groupoids and lie algebroids , 2005 .

[19]  Eduardo Mart ´ inez REDUCTION IN OPTIMAL CONTROL THEORY , 2004 .