Synthesis of Piezocomposites

Piezocomposite materials are largely applied to acoustical devices such as sonars and ultrasonic transducers. Their development has also been based on the use of simple analytical models, test of prototypes, and analysis using the finite element method (FEM). Thus, following the idea of applying synthesis methods to design smart materials and MEMS structures, this chapter presents systematic synthesis methods for piezocomposite materials by using the topology optimization combined with the homogenization technique. In this method, a piezocomposite material with improved electromechanical efficiency is obtained by designing its unit cell topology. Beginning with a brief introduction to piezocomposite materials, its performance measurement, the concept of the homogenization method, and its manufacturing technique, the chapter provides a self-contained description of the synthesis method for these materials. The examples presented show that the synthesis method is indeed a promising tool to design these smart materials.

[1]  W. A. Smith,et al.  The role of piezocomposites in ultrasonic transducers , 1989, Proceedings., IEEE Ultrasonics Symposium,.

[2]  N. Kikuchi,et al.  Optimal design of piezoelectric microstructures , 1997 .

[3]  Garret N. Vanderplaats,et al.  Numerical Optimization Techniques for Engineering Design: With Applications , 1984 .

[4]  O. Sigmund Tailoring materials with prescribed elastic properties , 1995 .

[5]  W. A. Smith,et al.  The application of 1-3 piezocomposites in acoustic transducers , 1990, [Proceedings] 1990 IEEE 7th International Symposium on Applications of Ferroelectrics.

[6]  N. Kikuchi,et al.  Design of piezocomposite materials and piezoelectric transducers using topology optimization— Part III , 1999 .

[7]  Robert Lipton,et al.  Optimal bounds on effective elastic tensors for orthotropic composites , 1994, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[8]  G. Milton,et al.  Which Elasticity Tensors are Realizable , 1995 .

[9]  Salvatore Torquato,et al.  On the use of homogenization theory to design optimal piezocomposites for hydrophone applications , 1997 .

[10]  J. J. Telega,et al.  Homogenization and thermopiezoelectricity , 1992 .

[11]  Andrew J. Ruys,et al.  Functionally graded electrical/thermal ceramic systems , 2001 .

[12]  Jun Sergio Ono Fonseca Design of microstructures of periodic composite materials. , 1997 .

[13]  Gérard A. Maugin,et al.  Continuum models and discrete systems , 1990 .

[14]  Robert E. Newnham,et al.  An experimental and theoretical study of 1–3 AND 1-3-0 piezoelectric PZT-Polymer composites for hydrophone applications , 1986 .

[15]  R. Haftka,et al.  Elements of Structural Optimization , 1984 .

[16]  Gérard A. Maugin,et al.  On the linear piezoelectricity of composite materials , 1991 .

[17]  N. Kikuchi,et al.  Preprocessing and postprocessing for materials based on the homogenization method with adaptive fini , 1990 .

[18]  A. Safari Development of piezoelectric composites for transducers , 1994 .

[19]  G. Hayward,et al.  Design of 1-3 piezocomposite hydrophones using finite element analysis , 1997, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[20]  W. A. Smith,et al.  Optimizing electromechanical coupling in piezocomposites using polymers with negative Poisson's ratio , 1991, IEEE 1991 Ultrasonics Symposium,.

[21]  Improved efficiency piezoelectric ceramic/polymer composite transducers , 1992, IEEE 1992 Ultrasonics Symposium Proceedings.

[22]  E. Sanchez-Palencia Non-Homogeneous Media and Vibration Theory , 1980 .

[23]  J. A. Otero,et al.  Homogenization of heterogeneous piezoelectric medium , 1997 .

[24]  B. Auld,et al.  Modeling 1-3 composite piezoelectrics: thickness-mode oscillations , 1991, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[25]  W. A. Smith,et al.  Modeling 1-3 composite piezoelectrics: hydrostatic response , 1993, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[26]  F. Montero de Espinosa,et al.  Modeling (2-2) piezocomposites partially sliced in the polymer phase , 1997, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[27]  W. A. Smith,et al.  Limits to the enhancement of piezoelectric transducers achievable by materials engineering , 1992, IEEE 1992 Ultrasonics Symposium Proceedings.

[28]  S. Shtrikman,et al.  A variational approach to the theory of the elastic behaviour of multiphase materials , 1963 .

[29]  John W. Halloran,et al.  Fabrication of Microconfigured Multicomponent Ceramics , 2005 .

[30]  O. Sigmund Materials with prescribed constitutive parameters: An inverse homogenization problem , 1994 .

[31]  Ahmad Safari,et al.  Composite piezoelectric sensors , 1984 .

[32]  Paul F. Jacobs,et al.  Stereolithography and Other Rp&m Technologies: From Rapid Prototyping to Rapid Tooling , 1995 .

[33]  G. Hayward,et al.  Assessing the influence of pillar aspect ratio on the behavior of 1-3 connectivity composite transducers , 1996, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[34]  K. Liew,et al.  Active control of FGM plates with integrated piezoelectric sensors and actuators , 2001 .

[35]  Salvatore Torquato,et al.  Optimal design of 1-3 composite piezoelectrics , 1997 .

[36]  Ole Sigmund,et al.  On the design of 1–3 piezocomposites using topology optimization , 1998 .

[37]  S. Torquato,et al.  Design of materials with extreme thermal expansion using a three-phase topology optimization method , 1997 .

[38]  Noboru Kikuchi,et al.  Optimal design of periodic piezocomposites , 1998 .

[39]  J. Hossack,et al.  Finite-element analysis of 1-3 composite transducers , 1991, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[40]  L. E. Cross,et al.  Connectivity and piezoelectric-pyroelectric composites , 1978 .