Search Result Diversification
暂无分享,去创建一个
[1] Guido Zuccon,et al. Using the Quantum Probability Ranking Principle to Rank Interdependent Documents , 2010, ECIR.
[2] M. E. Maron,et al. On Relevance, Probabilistic Indexing and Information Retrieval , 1960, JACM.
[3] W. Bruce Croft,et al. Quantifying query ambiguity , 2002 .
[4] Hong Cheng,et al. An exploration of pattern-based subtopic modeling for search result diversification , 2011, JCDL '11.
[5] William Goffman,et al. On relevance as a measure , 1964, Inf. Storage Retr..
[6] Zhoujun Li,et al. A Survival Modeling Approach to Biomedical Search Result Diversification Using Wikipedia , 2010, IEEE Transactions on Knowledge and Data Engineering.
[7] Charles L. A. Clarke,et al. The impact of intent selection on diversified search evaluation , 2013, SIGIR.
[8] Olfa Nasraoui,et al. Mining search engine query logs for query recommendation , 2006, WWW '06.
[9] Mounia Lalmas,et al. Workshop on aggregated search , 2008, SIGF.
[10] Paul Over,et al. Comparing interactive information retrieval systems across sites: the TREC-6 interactive track matrix experiment , 1998, SIGIR '98.
[11] Edward A. Fox,et al. Combination of Multiple Searches , 1993, TREC.
[12] Yi-Cheng Zhang,et al. Solving the apparent diversity-accuracy dilemma of recommender systems , 2008, Proceedings of the National Academy of Sciences.
[13] Thorsten Joachims,et al. Online learning to diversify from implicit feedback , 2012, KDD.
[14] Rodrygo L. T. Santos,et al. Topic diversity in tag recommendation , 2013, RecSys.
[15] Filip Radlinski,et al. Learning optimally diverse rankings over large document collections , 2010, ICML.
[16] Jun Wang,et al. Portfolio theory of information retrieval , 2009, SIGIR.
[17] Ahmet Murat Ozdemiray,et al. Score and Rank Aggregation Methods For Explicit Search Result Diversification , 2013 .
[18] Susan T. Dumais,et al. Characterizing the value of personalizing search , 2007, SIGIR.
[19] E. Rowland. Theory of Games and Economic Behavior , 1946, Nature.
[20] S. Robertson. The probability ranking principle in IR , 1997 .
[21] Ximena Olivares,et al. Visual diversification of image search results , 2009, WWW '09.
[22] Hugo Liu,et al. ConceptNet — A Practical Commonsense Reasoning Tool-Kit , 2004 .
[23] Xueqi Cheng,et al. Learning for search result diversification , 2014, SIGIR.
[24] Filip Radlinski,et al. Learning diverse rankings with multi-armed bandits , 2008, ICML '08.
[25] Licia Capra,et al. Temporal diversity in recommender systems , 2010, SIGIR.
[26] Charles L. A. Clarke,et al. Overview of the TREC 2011 Web Track , 2011, TREC.
[27] Mark Sanderson,et al. Ambiguous queries: test collections need more sense , 2008, SIGIR '08.
[28] Jade Goldstein-Stewart,et al. The Use of MMR, Diversity-Based Reranking for Reordering Documents and Producing Summaries , 1998, SIGIR Forum.
[29] Mark Sanderson,et al. Multiple approaches to analysing query diversity , 2009, SIGIR.
[30] Cong Yu,et al. It takes variety to make a world: diversification in recommender systems , 2009, EDBT '09.
[31] Saul Vargas,et al. Rank and relevance in novelty and diversity metrics for recommender systems , 2011, RecSys '11.
[32] W. Bruce Croft,et al. Diversity by proportionality: an election-based approach to search result diversification , 2012, SIGIR '12.
[33] Yang Song,et al. Post-ranking query suggestion by diversifying search results , 2011, SIGIR '11.
[34] Charles L. A. Clarke,et al. On the informativeness of cascade and intent-aware effectiveness measures , 2011, WWW.
[35] Xin-She Yang,et al. Introduction to Algorithms , 2021, Nature-Inspired Optimization Algorithms.
[36] Mark Sanderson,et al. Using score differences for search result diversification , 2014, SIGIR.
[37] Harry Shum,et al. Query Dependent Ranking Using K-nearest Neighbor * , 2022 .
[38] Gerhard J. Woeginger,et al. Exact Algorithms for NP-Hard Problems: A Survey , 2001, Combinatorial Optimization.
[39] José Luis Vicedo González,et al. TREC: Experiment and evaluation in information retrieval , 2007, J. Assoc. Inf. Sci. Technol..
[40] W. Bruce Croft,et al. Diversifying query suggestions based on query documents , 2014, SIGIR.
[41] Fabrizio Silvestri,et al. Efficient Diversification of Web Search Results , 2011, Proc. VLDB Endow..
[42] Kenneth Ward Church,et al. Query suggestion using hitting time , 2008, CIKM '08.
[43] Udo Kruschwitz,et al. Deriving query suggestions for site search , 2013, J. Assoc. Inf. Sci. Technol..
[44] Stefano Mizzaro,et al. Relevance: The Whole History , 1997, J. Am. Soc. Inf. Sci..
[45] Craig MacDonald,et al. Learning to rank query suggestions for adhoc and diversity search , 2012, Information Retrieval.
[46] Thorsten Joachims,et al. Predicting diverse subsets using structural SVMs , 2008, ICML '08.
[47] Benjamin Rey,et al. Generating query substitutions , 2006, WWW '06.
[48] J. Marden. Analyzing and Modeling Rank Data , 1996 .
[49] W. Bruce Croft,et al. A Language Modeling Approach to Information Retrieval , 1998, SIGIR Forum.
[50] Tetsuya Sakai. Evaluation with informational and navigational intents , 2012, WWW.
[51] Fabrizio Silvestri,et al. Generating suggestions for queries in the long tail with an inverted index , 2012, Inf. Process. Manag..
[52] Sean M. McNee,et al. Improving recommendation lists through topic diversification , 2005, WWW '05.
[53] Stephen E. Robertson,et al. Simple BM25 extension to multiple weighted fields , 2004, CIKM '04.
[54] Min Wang,et al. Search result diversification for enterprise data , 2011, CIKM '11.
[55] ChengXiang Zhai,et al. Statistical Language Models for Information Retrieval: A Critical Review , 2008, Found. Trends Inf. Retr..
[56] Yong Yu,et al. Identification of ambiguous queries in web search , 2009, Inf. Process. Manag..
[57] Emine Yilmaz,et al. The maximum entropy method for analyzing retrieval measures , 2005, SIGIR '05.
[58] Ricardo A. Baeza-Yates,et al. Query Recommendation Using Query Logs in Search Engines , 2004, EDBT Workshops.
[59] Dorit S. Hochba,et al. Approximation Algorithms for NP-Hard Problems , 1997, SIGA.
[60] Filip Radlinski,et al. Improving personalized web search using result diversification , 2006, SIGIR.
[61] Rodrygo L. T. Santos,et al. Information Retrieval on the Blogosphere , 2012, Found. Trends Inf. Retr..
[62] M. de Rijke,et al. Result diversification based on query-specific cluster ranking , 2011, J. Assoc. Inf. Sci. Technol..
[63] Filip Radlinski,et al. Redundancy, diversity and interdependent document relevance , 2009, SIGF.
[64] Wei Zheng,et al. Exploiting concept hierarchy for result diversification , 2012, CIKM.
[65] Tie-Yan Liu,et al. Future directions in learning to rank , 2010, Yahoo! Learning to Rank Challenge.
[66] Gianni Amati,et al. Probability models for information retrieval based on divergence from randomness , 2003 .
[67] Krishna Bharat,et al. Diversifying web search results , 2010, WWW '10.
[68] Craig MacDonald,et al. Intent-aware search result diversification , 2011, SIGIR.
[69] W. Bruce Croft,et al. Term level search result diversification , 2013, SIGIR.
[70] Michael R. Lyu,et al. Diversifying Query Suggestion Results , 2010, AAAI.
[71] Justin Zobel,et al. Redundant documents and search effectiveness , 2005, CIKM '05.
[72] In-Ho Kang,et al. Query type classification for web document retrieval , 2003, SIGIR.
[73] John D. Lafferty,et al. A risk minimization framework for information retrieval , 2006, Inf. Process. Manag..
[74] Andrei Broder,et al. A taxonomy of web search , 2002, SIGF.
[75] Cyril Cleverdon,et al. The Cranfield tests on index language devices , 1997 .
[76] C. J. van Rijsbergen,et al. The geometry of information retrieval , 2004 .
[77] William S. Cooper,et al. Some inconsistencies and misidentified modeling assumptions in probabilistic information retrieval , 1995, TOIS.
[78] Nick Craswell,et al. An experimental comparison of click position-bias models , 2008, WSDM '08.
[79] Ben Carterette,et al. Preference based evaluation measures for novelty and diversity , 2013, SIGIR.
[80] Stephen E. Robertson,et al. Probabilistic models of indexing and searching , 1980, SIGIR '80.
[81] Chris Buckley. Why current IR engines fail , 2004, SIGIR '04.
[82] Sriram Raghavan,et al. Searching the Web , 2001, ACM Trans. Internet Techn..
[83] Craig MacDonald,et al. On the role of novelty for search result diversification , 2011, Information Retrieval.
[84] Ji-Rong Wen,et al. Multi-dimensional search result diversification , 2011, WSDM '11.
[85] Gianni Amati,et al. Frequentist and Bayesian Approach to Information Retrieval , 2006, ECIR.
[86] Samir Khuller,et al. The Budgeted Maximum Coverage Problem , 1999, Inf. Process. Lett..
[87] Jayant Madhavan,et al. Identifying Aspects for Web-Search Queries , 2011, J. Artif. Intell. Res..
[88] Reiner Kraft,et al. Mining anchor text for query refinement , 2004, WWW '04.
[89] David R. Karger,et al. Less is More Probabilistic Models for Retrieving Fewer Relevant Documents , 2006 .
[90] Jean-Loup Guillaume,et al. Fast unfolding of communities in large networks , 2008, 0803.0476.
[91] Christopher Olston,et al. Search result diversity for informational queries , 2011, WWW.
[92] Hermann Ney,et al. Jointly optimising relevance and diversity in image retrieval , 2009, CIVR '09.
[93] David Vallet,et al. Crowdsourced Evaluation of Personalization and Diversi- fication Techniques in Web Search , 2011 .
[94] Stephen P. Harter,et al. A probabilistic approach to automatic keyword indexing. Part II. An algorithm for probabilistic indexing , 1975, J. Am. Soc. Inf. Sci..
[95] Francesco Bonchi,et al. Query suggestions using query-flow graphs , 2009, WSCD '09.
[96] Craig MacDonald,et al. Exploiting query reformulations for web search result diversification , 2010, WWW '10.
[97] Yiqun Liu,et al. Overview of the NTCIR-10 INTENT-2 Task , 2013, NTCIR.
[98] Thomas Hofmann,et al. Large Margin Methods for Structured and Interdependent Output Variables , 2005, J. Mach. Learn. Res..
[99] Xiaojin Zhu,et al. Improving Diversity in Ranking using Absorbing Random Walks , 2007, NAACL.
[100] Craig MacDonald,et al. Learning to Select a Ranking Function , 2010, ECIR.
[101] Francesco Bonchi,et al. From "Dango" to "Japanese Cakes": Query Reformulation Models and Patterns , 2009, 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology.
[102] Ben Carterette,et al. An analysis of NP-completeness in novelty and diversity ranking , 2009, Information Retrieval.
[103] Stephen E. Robertson,et al. Simple Evaluation Metrics for Diversified Search Results , 2010, EVIA@NTCIR.
[104] Stephen E. Robertson,et al. Ambiguous requests: implications for retrieval tests, systems and theories , 2007, SIGF.
[105] W. Bruce Croft,et al. Uncertainty in Information Retrieval Systems , 1996, Uncertainty Management in Information Systems.
[106] Tetsuya Sakai,et al. Alternatives to Bpref , 2007, SIGIR.
[107] Massimo Melucci,et al. Contextual Search: A Computational Framework , 2012, Found. Trends Inf. Retr..
[108] Fan Zhang,et al. Mining subtopics from text fragments for a web query , 2013, Information Retrieval.
[109] Nivio Ziviani,et al. Discovering Search Engine Related Queries Using Association Rules , 2003, J. Web Eng..
[110] Craig MacDonald,et al. Modelling efficient novelty-based search result diversification in metric spaces , 2013, J. Discrete Algorithms.
[111] Michael D. Gordon,et al. When Is the Probability Ranking Principle Suboptimal? , 1992, J. Am. Soc. Inf. Sci..
[112] Aristides Gionis,et al. Improving recommendation for long-tail queries via templates , 2011, WWW.
[113] John G. Kemeny,et al. Finite Markov Chains. , 1960 .
[114] Nattiya Kanhabua,et al. Leveraging Dynamic Query Subtopics for Time-Aware Search Result Diversification , 2014, ECIR.
[115] Min Wang,et al. Leveraging integrated information to extract query subtopics for search result diversification , 2013, Information Retrieval.
[116] Daniel E. Rose,et al. Understanding user goals in web search , 2004, WWW '04.
[117] Ben Carterette,et al. Probabilistic models of ranking novel documents for faceted topic retrieval , 2009, CIKM.
[118] Jian-Yun Nie,et al. Diversified query expansion using conceptnet , 2013, CIKM.
[119] Gerhard Friedrich,et al. Recommender Systems - An Introduction , 2010 .
[120] Donna K. Harman,et al. Overview of the Second Text REtrieval Conference (TREC-2) , 1994, HLT.
[121] Hugo Zaragoza,et al. The Probabilistic Relevance Framework: BM25 and Beyond , 2009, Found. Trends Inf. Retr..
[122] Charles L. A. Clarke,et al. Novelty and diversity in information retrieval evaluation , 2008, SIGIR '08.
[123] Saul Vargas,et al. Intent-oriented diversity in recommender systems , 2011, SIGIR.
[124] Craig MacDonald,et al. Aggregated Search Result Diversification , 2011, ICTIR.
[125] Gianluca Demartini,et al. ARES: A Retrieval Engine Based on Sentiments - Sentiment-Based Search Result Annotation and Diversification , 2011, ECIR.
[126] Kevin S. McCurley,et al. Analysis of anchor text for web search , 2003, SIGIR.
[127] Craig MacDonald,et al. Modelling Relevance towards Multiple Inclusion Criteria when Ranking Patients. , 2014, CIKM.
[128] Olivier Chapelle,et al. Expected reciprocal rank for graded relevance , 2009, CIKM.
[129] Peter Fankhauser,et al. DivQ: diversification for keyword search over structured databases , 2010, SIGIR.
[130] Charles L. A. Clarke,et al. Increasing evaluation sensitivity to diversity , 2012, Information Retrieval.
[131] J. Friedman. Greedy function approximation: A gradient boosting machine. , 2001 .
[132] Charles L. A. Clarke,et al. Overview of the TREC 2010 Web Track , 2010, TREC.
[133] Doug Downey,et al. Heads and tails: studies of web search with common and rare queries , 2007, SIGIR.
[134] Charles L. A. Clarke,et al. A comparative analysis of cascade measures for novelty and diversity , 2011, WSDM '11.
[135] Justin Zobel,et al. How reliable are the results of large-scale information retrieval experiments? , 1998, SIGIR '98.
[136] ChengXiang Zhai,et al. A study of methods for negative relevance feedback , 2008, SIGIR '08.
[137] Rodrygo L. T. Santos. Explicit web search result diversification , 2013, SIGF.
[138] W. Bruce Croft,et al. Query reformulation using anchor text , 2010, WSDM '10.
[139] Filip Radlinski,et al. Metrics for assessing sets of subtopics , 2010, SIGIR '10.
[140] Aristides Gionis,et al. The query-flow graph: model and applications , 2008, CIKM '08.
[141] Michael I. Jordan,et al. Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..
[142] Craig MacDonald,et al. Intent models for contextualising and diversifying query suggestions , 2013, CIKM.
[143] Charles L. A. Clarke,et al. Overview of the TREC 2012 Web Track , 2012, TREC.
[144] Stephen P. Harter,et al. A probabilistic approach to automatic keyword indexing. Part I. On the Distribution of Specialty Words in a Technical Literature , 1975, J. Am. Soc. Inf. Sci..
[145] Ralf Krestel,et al. Diversifying Product Review Rankings: Getting the Full Picture , 2011, 2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology.
[146] Tetsuya Sakai,et al. Evaluating evaluation metrics based on the bootstrap , 2006, SIGIR.
[147] Paul Over,et al. TREC-7 Interactive Track Report , 1998, TREC.
[148] Jaana Kekäläinen,et al. Cumulated gain-based evaluation of IR techniques , 2002, TOIS.
[149] Sreenivas Gollapudi,et al. An axiomatic approach for result diversification , 2009, WWW '09.
[150] Tetsuya Sakai. The Unreusability of Diversified Search Test Collections , 2013, EVIA@NTCIR.
[151] Rakesh V. Vohra,et al. A Probabilistic Analysis of the Maximal Covering Location Problem , 1993, Discret. Appl. Math..
[152] Murat Dundar,et al. Learning Classifiers When the Training Data Is Not IID , 2007, IJCAI.
[153] Milad Shokouhi,et al. From federated to aggregated search , 2010, SIGIR.
[154] Michael D. Gordon,et al. A utility theoretic examination of the probability ranking principle in information retrieval , 1991, J. Am. Soc. Inf. Sci..
[155] Stephen E. Robertson,et al. Okapi at TREC-3 , 1994, TREC.
[156] Emre Velipasaoglu,et al. Intent-based diversification of web search results: metrics and algorithms , 2011, Information Retrieval.
[157] Monika Henzinger,et al. Analysis of a very large web search engine query log , 1999, SIGF.
[158] Stephen E. Robertson,et al. GatfordCentre for Interactive Systems ResearchDepartment of Information , 1996 .
[159] Djoerd Hiemstra,et al. A Linguistically Motivated Probabilistic Model of Information Retrieval , 1998, ECDL.
[160] Rodrygo L. T. Santos,et al. Diversifying for Multiple Information Needs , 2011 .
[161] Mark Sanderson,et al. Test Collection Based Evaluation of Information Retrieval Systems , 2010, Found. Trends Inf. Retr..
[162] M. de Rijke,et al. Fusion helps diversification , 2014, SIGIR.
[163] Prasenjit Mitra,et al. Query suggestions in the absence of query logs , 2011, SIGIR.
[164] Jiayu Tang,et al. Generic and Spatial Approaches to Image Search Results Diversification , 2009, ECIR.
[165] Filip Radlinski,et al. Inferring query intent from reformulations and clicks , 2010, WWW '10.
[166] lawa Kanas,et al. Metric Spaces , 2020, An Introduction to Functional Analysis.
[167] Arjen P. de Vries,et al. Combining implicit and explicit topic representations for result diversification , 2012, SIGIR '12.
[168] Stephen E. Robertson,et al. Microsoft Cambridge at TREC 13: Web and Hard Tracks , 2004, TREC.
[169] M. L. Fisher,et al. An analysis of approximations for maximizing submodular set functions—I , 1978, Math. Program..
[170] Sreenivas Gollapudi,et al. Diversifying search results , 2009, WSDM '09.
[171] Pia Borlund,et al. The concept of relevance in IR , 2003, J. Assoc. Inf. Sci. Technol..
[172] Yiqun Liu,et al. Overview of the NTCIR-9 INTENT Task , 2011, NTCIR.
[173] Craig MacDonald,et al. Sparse Spatial Selection for Novelty-Based Search Result Diversification , 2011, SPIRE.
[174] Jade Goldstein-Stewart,et al. The use of MMR, diversity-based reranking for reordering documents and producing summaries , 1998, SIGIR '98.
[175] Pablo Castells,et al. Personalized diversification of search results , 2012, SIGIR '12.
[176] Craig MacDonald,et al. Explicit Search Result Diversification through Sub-queries , 2010, ECIR.
[177] Amanda Spink,et al. Real life information retrieval: a study of user queries on the Web , 1998, SIGF.
[178] Nick Craswell,et al. Random walks on the click graph , 2007, SIGIR.
[179] W. Bruce Croft,et al. Inferring query aspects from reformulations using clustering , 2011, CIKM '11.
[180] Amanda Spink,et al. Real life, real users, and real needs: a study and analysis of user queries on the web , 2000, Inf. Process. Manag..
[181] Alistair Moffat,et al. Rank-biased precision for measurement of retrieval effectiveness , 2008, TOIS.
[182] Albert N. Link,et al. Economic impact assessment of NIST's text REtrieval conference (TREC) program. Final report , 2010 .
[183] Paul Over,et al. TREC-6 Interactive Report , 1997, TREC.
[184] Cyril W. Cleverdon,et al. The significance of the Cranfield tests on index languages , 1991, SIGIR '91.
[185] P. W. Jones,et al. Bandit Problems, Sequential Allocation of Experiments , 1987 .
[186] Sihem Amer-Yahia,et al. Efficient Computation of Diverse Query Results , 2008, 2008 IEEE 24th International Conference on Data Engineering.
[187] Fabrizio Silvestri,et al. Mining Query Logs: Turning Search Usage Data into Knowledge , 2010, Found. Trends Inf. Retr..
[188] Craig MacDonald,et al. Selectively diversifying web search results , 2010, CIKM.
[189] Charles L. A. Clarke,et al. An Effectiveness Measure for Ambiguous and Underspecified Queries , 2009, ICTIR.
[190] Doug Beeferman,et al. Agglomerative clustering of a search engine query log , 2000, KDD '00.
[191] Stephen E. Robertson,et al. Relevance weighting of search terms , 1976, J. Am. Soc. Inf. Sci..
[192] Craig MacDonald,et al. Selecting effective expansion terms for diversity , 2013, OAIR.
[193] Ellen M. Voorhees,et al. TREC: Continuing information retrieval's tradition of experimentation , 2007, CACM.
[194] Mark Sanderson,et al. Do user preferences and evaluation measures line up? , 2010, SIGIR.
[195] Joemon M. Jose,et al. A comprehensive analysis of parameter settings for novelty-biased cumulative gain , 2012, CIKM '12.
[196] B. Nordstrom. FINITE MARKOV CHAINS , 2005 .
[197] ChengXiang Zhai,et al. Mining term association patterns from search logs for effective query reformulation , 2008, CIKM '08.
[198] W. Bruce Croft,et al. Relevance-Based Language Models , 2001, SIGIR '01.
[199] Tetsuya Sakai,et al. Diversified search evaluation: lessons from the NTCIR-9 INTENT task , 2012, Information Retrieval.
[200] Ben Carterette,et al. Robust test collections for retrieval evaluation , 2007, SIGIR.
[201] Jun Wang,et al. Top-k Retrieval Using Facility Location Analysis , 2012, ECIR.
[202] Ellen M. Voorhees,et al. TREC: Experiment and Evaluation in Information Retrieval (Digital Libraries and Electronic Publishing) , 2005 .