Friction control by engineering the crystallographic orientation of the lubricating few-layer MoS2 films

[1]  A. Bird,et al.  Micro-scale impact testing - A new approach to studying fatigue resistance in hard carbon coatings , 2020 .

[2]  P. Šiffalovič,et al.  Tuning the orientation of few-layer MoS2 films using one-zone sulfurization , 2019, RSC advances.

[3]  S. Valeri,et al.  Nanoscale frictional properties of ordered and disordered MoS2 , 2019, Tribology International.

[4]  Minhao Zhu,et al.  Structure and tribological behavior of Pb-Ti/MoS 2 nanoscaled multilayer films deposited by magnetron sputtering method , 2018 .

[5]  José Daniel Biasoli de Mello,et al.  Self-lubricating composites containing MoS2: A review , 2017 .

[6]  Soo Young Park,et al.  Molecular-scale shear response of the organic semiconductor β -DBDCS (100) surface , 2017 .

[7]  I. Štich,et al.  Limitations of Structural Superlubricity: Chemical Bonds versus Contact Size. , 2017, ACS nano.

[8]  E. Gnecco,et al.  A molecular-scale portrait of domain imaging in organic surfaces. , 2017, Nanoscale.

[9]  C. Su,et al.  Mechanical Property Mapping at the Nanoscale Using PeakForce QNM Scanning Probe Technique , 2014 .

[10]  E. Koumoulos,et al.  Nanotribological Behavior of Carbon Based Thin Films: Friction and Lubricity Mechanisms at the Nanoscale , 2013 .

[11]  Stefano Zapperi,et al.  Colloquium: Modeling friction: From nanoscale to mesoscale , 2011, 1112.3234.

[12]  T. Lee,et al.  Contact Angle and Wetting Properties , 2013 .

[13]  Yilun Liu,et al.  Self-retracting motion of graphite micro-flakes: superlubricity in micrometer scale , 2011, 1104.3320.

[14]  Vivek Subramanian,et al.  Quantification of thin film crystallographic orientation using X-ray diffraction with an area detector. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[15]  B. He,et al.  Two-dimensional X-ray Diffraction , 2009 .

[16]  M. Fasolka,et al.  Effects of humidity and sample surface free energy on AFM probe-sample interactions and lateral force microscopy image contrast. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[17]  H. Butt,et al.  Influence of Humidity on Adhesion: An Atomic Force Microscope Study , 2008 .

[18]  O. Auciello,et al.  Surface chemistry and bonding configuration of ultrananocrystalline diamond surfaces and their effects on nanotribological properties , 2007 .

[19]  A. Sumant,et al.  Nanoscale Friction Varied by Isotopic Shifting of Surface Vibrational Frequencies , 2007, Science.

[20]  Frederick R. Manby,et al.  Fast local-MP2 method with density-fitting for crystals. II. Test calculations and application to the carbon dioxide crystal , 2007 .

[21]  D. F. Ogletree,et al.  Electronic Control of Friction in Silicon pn Junctions , 2006, Science.

[22]  S. Kim,et al.  Tribological properties of solid lubricants (graphite, Sb2S3, MoS2) for automotive brake friction materials , 2006 .

[23]  A. Naumovets,et al.  Nanotribology : Microscopic mechanisms of friction , 2006 .

[24]  B. Bhushan Nanotribology and nanomechanics , 2005 .

[25]  D. Teer,et al.  Tribological properties of graphite-like and diamond-like carbon coatings , 2004 .

[26]  A. Erdemir,et al.  Solid Lubricant Coatings: Recent Developments and Future Trends , 2004 .

[27]  T. J. Allen,et al.  Advantages of using self-lubricating, hard, wear-resistant mos2-based coatings , 2001 .

[28]  S. Bull Tribology of carbon coatings: DLC, diamond and beyond , 1995 .

[29]  P. D. Fleischauer,et al.  Applications of solid lubricant films in spacecraft , 1992 .

[30]  P. D. Fleischauer,et al.  CHEMICAL AND TRIBOLOGICAL STUDIES OF MoS2 FILMS ON SiC SUBSTRATES , 1990 .

[31]  P. D. Fleischauer Fundamental aspects of the electronic structure, materials properties and lubrication performance of sputtered MoS2 films , 1987 .

[32]  Robert C. Weast,et al.  Handbook of chemistry and physics : a readyreference book of chemical and physical data , 1972 .