Modeling fixed-bed adsorption columns through orthogonal collocations on moving finite elements

[1]  L. Lapidus,et al.  Mathematics of Adsorption in Beds. VI. The Effect of Longitudinal Diffusion in Ion Exchange and Chromatographic Columns , 1952 .

[2]  L. Lapidus,et al.  Mathematics of Adsorption in Beds. V. Effect of Intra-particle Diffusion in Flow Systems in Fixed Beds , 1952 .

[3]  N. Amundson,et al.  On the theory of multicomponent chromatography , 1970, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[4]  Hyun-Ku Rhee,et al.  Shock layer in two solute chromatography: effect of axial dispersion and mass transfer , 1974 .

[5]  A. Liapis,et al.  A general model for the simulaiton of multi-component adsorption from a finite bath , 1977 .

[6]  F. Helferich,et al.  Multicomponent Chromatography—Theory of Interference , 1977 .

[7]  Keith Miller,et al.  Moving Finite Elements. I , 1981 .

[8]  M. Morbidelli,et al.  Simulation of multicomponent adsorption beds. Model analysis and numerical solution , 1982 .

[9]  N. Amundson,et al.  Analysis of multicomponent separation by displacement development , 1982 .

[10]  M. Morbidelli,et al.  Study of a separation process through adsorption of molecular sieves: Application to a chlorotoluene isomers mixture , 1984 .

[11]  Douglas M. Ruthven,et al.  Principles of Adsorption and Adsorption Processes , 1984 .

[12]  Laura Gardini,et al.  Use of orthogonal collocation on finite elements with moving boundaries for fixed bed catalytic reactor simulation , 1985 .

[13]  Design Methods for Ion-Exchange Processes Based on the “Equilibrium Theory” , 1986 .

[14]  Joseph E. Flaherty,et al.  A moving finite element method with error estimation and refinement for one-dimensional time dependent partial differential equations , 1986 .

[15]  G. Guiochon,et al.  Computer simulation of the separation of a two-component mixture in preparative-scale liquid chromatography , 1988 .

[16]  D. Ruthven,et al.  Counter-current and simulated counter-current adsorption separation processes , 1989 .

[17]  Q. Yu,et al.  Computer simulations of the dynamics of multicomponent ion exchange and adsorption in fixed beds. Gradient-directed moving finite element method , 1989 .

[18]  Georges Guiochon,et al.  Application of orthogonal collocation on finite elements in the simulation of non-linear chromatography , 1991 .

[19]  Roger Dean Whitley,et al.  A versatile model for simulation of reaction and nonequilibrium dynamics in multicomponent fixed-bed adsorption processes , 1991 .

[20]  Alírio E. Rodrigues,et al.  The moving finite element method with polynomial approximation of any degree , 1991 .

[21]  G. Ganetsos,et al.  Preparative and Production Scale Chromatography , 1992 .

[22]  Massimo Morbidelli,et al.  Robust design of binary countercurrent adsorption separation processes , 1993 .

[23]  Wen‐Chien Lee,et al.  Analysis of chromatography by plate theory , 1993 .

[24]  Shock layer analysis in multicomponent chromatography and countercurrent adsorption , 1994 .

[25]  I. H. Öğüş,et al.  NATO ASI Series , 1997 .