On Algebras with Effectful Iteration

For every finitary monad T on sets and every endofunctor F on the category of T-algebras we introduce the concept of an ffg-Elgot algebra for F, that is, an algebra admitting coherent solutions for finite systems of recursive equations with effects represented by the monad T. The goal of this paper is to study the existence and construction of free ffg-Elgot algebras. To this end, we investigate the locally ffg fixed point \(\varphi F\), the colimit of all F-coalgebras with free finitely generated carrier, which is shown to be the initial ffg-Elgot algebra. This is the technical foundation for our main result: the category of ffg-Elgot algebras is monadic over the category of T-algebras.

[1]  Alexandra Silva,et al.  Generalizing determinization from automata to coalgebras , 2013, Log. Methods Comput. Sci..

[2]  P. T. Johnstone,et al.  Adjoint Lifting Theorems for Categories of Algebras , 1975 .

[3]  Jirí Adámek,et al.  Elgot Algebras: (Extended Abstract) , 2006, MFPS.

[4]  Marcello M. Bonsangue,et al.  Context-free coalgebras , 2015, J. Comput. Syst. Sci..

[5]  Stefan Milius,et al.  A New Foundation for Finitary Corecursion and Iterative Algebras , 2018, Inf. Comput..

[6]  Jirí Adámek,et al.  Semantics of Higher-Order Recursion Schemes , 2009, CALCO.

[7]  Stefan Milius Completely iterative algebras and completely iterative monads , 2005, Inf. Comput..

[8]  Bruno Courcelle,et al.  Fundamental Properties of Infinite Trees , 1983, Theor. Comput. Sci..

[9]  Naoki Kobayashi,et al.  Resource Usage Analysis for the p-Calculus , 2006, Log. Methods Comput. Sci..

[10]  Peter Aczel,et al.  A Coalgebraic View of Infinite Trees and Iteration , 2001, CMCS.

[11]  Stefan Milius,et al.  A New Foundation for Finitary Corecursion - The Locally Finite Fixpoint and Its Properties , 2016, FoSSaCS.

[12]  Sally Popkorn,et al.  A Handbook of Categorical Algebra , 2009 .

[13]  Zoltán Ésik,et al.  Simulations of Weighted Tree Automata , 2010, CIAA.

[14]  Peter Aczel,et al.  Infinite trees and completely iterative theories: a coalgebraic view , 2003, Theor. Comput. Sci..

[15]  Brian A. Davey,et al.  Tensor products and entropic varieties , 1985 .

[16]  Stefan Milius,et al.  Finitary Corecursion for the Infinitary Lambda Calculus , 2015, CALCO.

[17]  L. Rédei,et al.  The theory of finitely generated commutative semigroups , 1965 .

[18]  J. Adámek,et al.  Locally Presentable and Accessible Categories: Bibliography , 1994 .

[19]  Stefan Milius,et al.  Regular Behaviours with Names , 2016, Appl. Categorical Struct..

[20]  Jirí Adámek,et al.  Iterative algebras at work , 2006, Mathematical Structures in Computer Science.

[21]  Paula Severi,et al.  Nominal Coalgebraic Data Types with Applications to Lambda Calculus , 2013, Log. Methods Comput. Sci..

[22]  M. Droste,et al.  Handbook of Weighted Automata , 2009 .

[23]  Jean Berstel,et al.  Rational series and their languages , 1988, EATCS monographs on theoretical computer science.

[24]  Ernst-Erich Doberkat,et al.  Eilenberg-Moore algebras for stochastic relations , 2006, Inf. Comput..

[25]  Ana Sokolova,et al.  Proper Semirings and Proper Convex Functors , 2018, FoSSaCS.

[26]  Stefan Milius,et al.  Proper Functors and Fixed Points for Finite Behaviour , 2017, Log. Methods Comput. Sci..

[27]  Jerzy Tiuryn Unique Fixed Points Vs. Least Fixed Points , 1980, Theor. Comput. Sci..

[28]  Lawrence S. Moss Parametric corecursion , 2001, Theor. Comput. Sci..

[29]  M. Barr Coequalizers and free triples , 1970 .

[30]  Susanna Ginali,et al.  Regular Trees and the Free Iterative Theory , 1979, J. Comput. Syst. Sci..

[31]  Christoph Lüth,et al.  Dualising Initial Algebras , 2003, Math. Struct. Comput. Sci..

[32]  M. Fliess,et al.  Sur divers produits de séries formelles , 1974 .

[33]  Peter Freyd,et al.  Redei’s finiteness theorem for commutative semigroups , 1968 .

[34]  Marcel Paul Schützenberger,et al.  On the Definition of a Family of Automata , 1961, Inf. Control..

[35]  Z. Ésik,et al.  Iteration Theories: The Equational Logic of Iterative Processes , 1993 .

[36]  Jirí Adámek,et al.  Fixed points of functors , 2018, J. Log. Algebraic Methods Program..

[37]  Vassilios Gregoriades The descriptive set-theoretic complexity of the set of points of continuity of a multi-valued function , 2011 .

[38]  H. Appelgate,et al.  Acyclic models and resolvent functors , 1967 .

[39]  Stefan Milius A Sound and Complete Calculus for Finite Stream Circuits , 2010, 2010 25th Annual IEEE Symposium on Logic in Computer Science.

[40]  Stefan Milius,et al.  Proper Functors and their Rational Fixed Point , 2017, CALCO.

[41]  Alexandra Silva,et al.  Sound and Complete Axiomatizations of Coalgebraic Language Equivalence , 2011, TOCL.

[42]  Jiří Adámek,et al.  What are sifted colimits , 2010 .

[43]  Zoltán Ésik,et al.  Simulation vs. Equivalence , 2010, FCS.

[44]  Gordon D. Plotkin,et al.  Abstract syntax and variable binding , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[45]  J. Lambek A fixpoint theorem for complete categories , 1968 .

[46]  A. Sokolova,et al.  Sound and Complete Axiomatization of Trace Semantics for Probabilistic Systems , 2011, MFPS.

[47]  Jan J. M. M. Rutten Rational Streams Coalgebraically , 2008, Log. Methods Comput. Sci..

[48]  Ana Sokolova,et al.  Congruences of convex algebras , 2015 .

[49]  Stefan Milius,et al.  On Finitary Functors and Finitely Presentable Algebras , 2019 .

[50]  Christoph Lüth,et al.  Algebras, Coalgebras, Monads and Comonads , 2001, CMCS.

[51]  Henning Urbat Finite Behaviours and Finitary Corecursion , 2017, CALCO.

[52]  Jason P. Bell,et al.  Iterative Algebras , 2015, 1503.01632.

[53]  C. C. Elgot Monadic Computation And Iterative Algebraic Theories , 1982 .

[54]  Gordon D. Plotkin,et al.  Towards a mathematical operational semantics , 1997, Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science.