Long Memory, Realized Volatility and HAR Models

The presence of long memory in Realized Volatility (RV) is a widespread stylized fact. The origins of long memory in RV have been attributed to jumps, structural breaks, non-linearities, or pure long memory. An important development has been the Heterogeneous Autoregressive (HAR) model and its extensions. This paper assesses the separate roles of fractionally integrated long memory models, extended HAR models and time varying parameter HAR models. We find that the presence of the long memory parameter is often important in addition to the HAR models.

[1]  Fulvio Corsi,et al.  A Simple Approximate Long-Memory Model of Realized Volatility , 2008 .

[2]  N. Shephard,et al.  Advances in Economics and Econometrics: Variation, Jumps, and High-Frequency Data in Financial Econometrics , 2007 .

[3]  Richard T. Baillie,et al.  Long memory processes and fractional integration in econometrics , 1996 .

[4]  B. Christensen,et al.  Asymptotic normality of narrow-band least squares in the stationary fractional cointegration model and volatility forecasting , 2006 .

[5]  F. Diebold,et al.  Long Memory and Regime Switching , 2000 .

[6]  Kevin Sheppard,et al.  Good Volatility, Bad Volatility: Signed Jumps and The Persistence of Volatility , 2013, Review of Economics and Statistics.

[7]  M. Medeiros,et al.  A multiple regime smooth transition Heterogeneous Autoregressive model for long memory and asymmetries , 2008 .

[8]  D. Poskitt Autoregressive approximation in nonstandard situations: the non-invertible and fractionally integrated cases , 2017 .

[9]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[10]  P. Sibbertsen,et al.  A Simple Test on Structural Change in Long-Memory Time Series , 2018 .

[11]  George Kapetanios,et al.  Nonlinear models for strongly dependent processes with financial applications , 2008 .

[12]  F. Diebold,et al.  VOLATILITY AND CORRELATION FORECASTING , 2006 .

[13]  T. Bollerslev,et al.  Risk and Return: Long-Run Relationships, Fractional Cointegration, and Return Predictability , 2013 .

[14]  Timo Teräsvirta,et al.  A simple nonlinear time series model with misleading linear properties , 1999 .

[15]  G. Kapetanios,et al.  Estimation and Inference for Impulse Response Functions from Univariate Strongly Persistent Processes , 2013 .

[16]  H. Hurst,et al.  A Suggested Statistical Model of some Time Series which occur in Nature , 1957, Nature.

[17]  J. R. Wallis,et al.  Noah, Joseph, and Operational Hydrology , 1968 .

[18]  D. Poskitt Properties of the Sieve Bootstrap for Fractionally Integrated and Non‐Invertible Processes , 2008 .

[19]  C. Granger,et al.  AN INTRODUCTION TO LONG‐MEMORY TIME SERIES MODELS AND FRACTIONAL DIFFERENCING , 1980 .

[20]  N. Shephard,et al.  Econometric analysis of realized volatility and its use in estimating stochastic volatility models , 2002 .

[21]  T. Bollerslev,et al.  MODELING AND PRICING LONG- MEMORY IN STOCK MARKET VOLATILITY , 1996 .

[22]  Lan Zhang Efficient Estimation of Stochastic Volatility Using Noisy Observations: A Multi-Scale Approach , 2004, math/0411397.

[23]  C. Granger,et al.  Occasional structural breaks and long memory with an application to the S&P 500 absolute stock returns , 2004 .

[24]  C. Granger,et al.  Varieties of long memory models , 1996 .

[25]  Lan Zhang,et al.  A Tale of Two Time Scales , 2003 .

[26]  F. Diebold,et al.  The Distribution of Realized Exchange Rate Volatility , 2000 .

[27]  H. E. Hurst,et al.  Long-Term Storage Capacity of Reservoirs , 1951 .

[28]  Jeffrey R. Russell,et al.  True or Spurious Long Memory? A New Test , 2008 .

[29]  Yacine Ait-Sahalia,et al.  How Often to Sample a Continuous-Time Process in the Presence of Market Microstructure Noise , 2003 .

[30]  James Davidson,et al.  Generating Schemes for Long Memory Processes: Regimes, Aggregation and Linearity , 2005 .

[31]  J. Geweke,et al.  THE ESTIMATION AND APPLICATION OF LONG MEMORY TIME SERIES MODELS , 1983 .

[32]  Bin Zhou,et al.  High Frequency Data and Volatility in Foreign Exchange Rates , 2013 .

[33]  Peter C. B. Phillips,et al.  Exact Local Whittle Estimation of Fractional Integration , 2002 .

[34]  Philipp Sibbertsen,et al.  Long memory versus structural breaks: An overview , 2004 .

[35]  Liudas Giraitis,et al.  Nonstationarity-Extended Local Whittle Estimation , 2006 .

[36]  M. T. Greene,et al.  Long-term dependence in common stock returns , 1977 .

[37]  Francis X. Diebold,et al.  Modeling and Forecasting Realized Volatility , 2001 .

[38]  R. Baillie,et al.  Fractionally integrated generalized autoregressive conditional heteroskedasticity , 1996 .

[39]  Kevin Sheppard,et al.  Does Anything Beat 5-Minute RV? A Comparison of Realized Measures Across Multiple Asset Classes , 2012 .

[40]  Morten Ørregaard Nielsen,et al.  Finite Sample Comparison of Parametric, Semiparametric, and Wavelet Estimators of Fractional Integration , 2005 .

[41]  Yuzo Hosoya,et al.  A limit theory for long-range dependence and statistical inference on related models , 1997 .

[42]  B. Christensen,et al.  The Effect of Long Memory in Volatility on Stock Market Fluctuations , 2007, The Review of Economics and Statistics.

[43]  N. Shephard,et al.  Power and bipower variation with stochastic volatility and jumps , 2003 .

[44]  M. Taqqu,et al.  Large-Sample Properties of Parameter Estimates for Strongly Dependent Stationary Gaussian Time Series , 1986 .

[45]  Federico M. Bandi,et al.  Microstructure Noise, Realized Variance, and Optimal Sampling , 2008 .

[46]  C. Granger Long memory relationships and the aggregation of dynamic models , 1980 .

[47]  B. Christensen,et al.  The Role of Implied Volatility in Forecasting Future Realized Volatility and Jumps in Foreign Exchange, Stock, and Bond Markets , 2007 .

[48]  N. Shephard,et al.  Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise , 2006 .

[49]  G. Kapetanios,et al.  Inference on stochastic time-varying coefficient models , 2014 .

[50]  B. Christensen,et al.  Long Memory in Stock Market Volatility and the Volatility-in-Mean Effect: The FIEGARCH-M Model , 2007 .