In Situ Surface Modification Enables High Stability and Optoelectrical Performance for a Self‐powered Photodetector

[1]  P. Yadav,et al.  Understanding the Origin of Light Intensity and Temperature Dependence of Photodetection Properties in a MAPbBr3 Single-Crystal-Based Photoconductor , 2023, ACS Photonics.

[2]  X. Ren,et al.  Recent Advances in Wide-Bandgap Organic–Inorganic Halide Perovskite Solar Cells and Tandem Application , 2023, Nano-Micro Letters.

[3]  Alessandro J. Mirabelli,et al.  Bright and stable perovskite light-emitting diodes in the near-infrared range , 2023, Nature.

[4]  X. Ren,et al.  Interlayer‐Spacing Engineering of Lead‐Free Perovskite Single Crystal for High‐Performance X‐Ray Imaging , 2023, Advanced materials.

[5]  Nakita K. Noel,et al.  Thermally Stable Perovskite Solar Cells by All-Vacuum Deposition , 2022, ACS applied materials & interfaces.

[6]  Xu-Lin Zhang,et al.  In Situ Encapsulated Moiré Perovskite for Stable Photodetectors with Ultrahigh Polarization Sensitivity , 2022, Advanced materials.

[7]  F. Gao,et al.  High-Performance UV-Vis Broad-Spectra Photodetector Based on a β-Ga2O3/Au/MAPbBr3 Sandwich Structure. , 2022, ACS applied materials & interfaces.

[8]  Haotong Wei,et al.  Spray-coated perovskite hemispherical photodetector featuring narrow-band and wide-angle imaging , 2022, Nature Communications.

[9]  G. Schneider,et al.  Operation voltage and illumination intensity dependent space-charge limited current conductions in vertical organic phototransistors based on CuPc/C60 heterojunction and graphene , 2022, Applied Physics Letters.

[10]  Yong Zhu,et al.  Polymer‐wrapped Perovskite Single Crystal for Surface Passivation and Robust Stability , 2022, Macromolecular Materials and Engineering.

[11]  A. Kalam,et al.  Revealing the Variation of Photodetectivity in MAPbI3 and MAPb(I0.88Br0.12)3 Single Crystal Based Photodetectors Under Electrical Poling-Induced Polarization , 2022, The Journal of Physical Chemistry C.

[12]  H. Snaith,et al.  Long-range charge carrier mobility in metal halide perovskite thin-films and single crystals via transient photo-conductivity , 2022, Nature Communications.

[13]  Y. Zhao,et al.  Single‐Crystalline Perovskite p–n Junction Nanowire Arrays for Ultrasensitive Photodetection , 2022, Advanced materials.

[14]  Yanlin Song,et al.  Micro‐Nano Structure Functionalized Perovskite Optoelectronics: From Structure Functionalities to Device Applications , 2022, Advanced Functional Materials.

[15]  S. Liu,et al.  Water‐Resistant Lead‐Free Perovskitoid Single Crystal for Efficient X‐Ray Detection , 2022, Advanced Functional Materials.

[16]  Qianqian Lin,et al.  Ion-exchange-induced slow crystallization of 2D-3D perovskite thick junctions for X-ray detection and imaging , 2022, Matter.

[17]  Rui Zhu,et al.  Perovskite hetero-bilayer for efficient charge-transport-layer-free solar cells , 2022, Joule.

[18]  O. Zmeskal,et al.  Electrode Spacing as a Determinant of the Output Performance of Planar-Type Photodetectors Based on Methylammonium Lead Bromide Perovskite Single Crystals. , 2022, ACS applied materials & interfaces.

[19]  Zhike Liu,et al.  Record‐Efficiency Flexible Perovskite Solar Cells Enabled by Multifunctional Organic Ions Interface Passivation , 2022, Advanced materials.

[20]  A. Ho-baillie,et al.  Inorganic‐Cation Pseudohalide 2D Cs2Pb(SCN)2Br2 Perovskite Single Crystal , 2021, Advanced materials.

[21]  Donghui Wang,et al.  A phosphorus-containing hyperbranched phthalocyanine flame retardant for epoxy resins , 2021, Scientific Reports.

[22]  Y. Qi,et al.  Atomic Scale Investigation of the CuPc–MAPbX3 Interface and the Effect of Non-Stoichiometric Perovskite Films on Interfacial Structures , 2021, ACS nano.

[23]  Zhenghong Lu,et al.  Recent Progress on Perovskite Surfaces and Interfaces in Optoelectronic Devices , 2021, Advanced materials.

[24]  G. Xiao,et al.  A Study of Interfacial Electronic Structure at the CuPc/CsPbI2Br Interface , 2021, Crystals.

[25]  M. Saidaminov,et al.  Perovskite Single-Crystal Solar Cells: Going Forward , 2021, ACS Energy Letters.

[26]  B. Lessard,et al.  Thin-Film Engineering of Solution-Processable n-Type Silicon Phthalocyanines for Organic Thin-Film Transistors. , 2020, ACS applied materials & interfaces.

[27]  W. Qian,et al.  Self‐Driven Perovskite Narrowband Photodetectors with Tunable Spectral Responses , 2020, Advanced materials.

[28]  P. Yadav,et al.  Efficient, Hysteresis‐Free, and Flexible Inverted Perovskite Solar Cells Using All‐Vacuum Processing , 2020 .

[29]  Mingfei Shao,et al.  TiO2/CuPc/NiFe-LDH photoanode for efficient photoelectrochemical water splitting , 2020 .

[30]  Andrew H. Proppe,et al.  Bifunctional Surface Engineering on SnO2 Reduces Energy Loss in Perovskite Solar Cells , 2020 .

[31]  Chen Zhao,et al.  Thickness-dependent carrier lifetime and mobility for MAPbBr3 single crystals , 2020 .

[32]  Hong Xia,et al.  Perovskite Single‐Crystal Microwire‐Array Photodetectors with Performance Stability beyond 1 Year , 2020, Advanced materials.

[33]  G. Mannino,et al.  Temperature-Dependent Optical Band Gap in CsPbBr3, MAPbBr3, and FAPbBr3 Single Crystals , 2020, The journal of physical chemistry letters.

[34]  T. Ren,et al.  Ultrafast Photodetector by Integrating Perovskite Directly on Silicon Wafer. , 2020, ACS nano.

[35]  L. Guo,et al.  High-Energy Photon Spectroscopy Using All Solution-Processed Heterojunctioned Surface-Modified Perovskite Single Crystals. , 2019, ACS applied materials & interfaces.

[36]  L. Qiu,et al.  Carbon-Based Electrode Engineering Boosts the Efficiency of All Low-Temperature-Processed Perovskite Solar Cells , 2019, ACS Energy Letters.

[37]  Zongxiang Xu,et al.  Carbon-chain length substituent effects on Cu(II) phthalocyanines as dopant-free hole-transport materials for perovskite solar cells , 2019, Solar Energy.

[38]  E. Fortunato,et al.  Photonic-structured TiO2 for high-efficiency, flexible and stable Perovskite solar cells , 2019, Nano Energy.

[39]  Andrew H. Proppe,et al.  Contactless measurements of photocarrier transport properties in perovskite single crystals , 2019, Nature Communications.

[40]  Weijian Chen,et al.  The Dominant Energy Transport Pathway in Halide Perovskites: Photon Recycling or Carrier Diffusion? , 2019, Advanced Energy Materials.

[41]  S. Seok,et al.  Intrinsic Instability of Inorganic–Organic Hybrid Halide Perovskite Materials , 2019, Advanced materials.

[42]  H. Zeng,et al.  Microconcave MAPbBr3 Single Crystal for High-Performance Photodetector. , 2019, The journal of physical chemistry letters.

[43]  Ming Liu,et al.  A 1300 mm2 Ultrahigh‐Performance Digital Imaging Assembly using High‐Quality Perovskite Single Crystals , 2018, Advanced materials.

[44]  Yongli Gao,et al.  Environmental Surface Stability of the MAPbBr3 Single Crystal , 2018 .

[45]  G. Qin,et al.  Phase modification of copper phthalocyanine semiconductor by converting powder to thin film , 2018 .

[46]  Siu-Fung Leung,et al.  A Self‐Powered and Flexible Organometallic Halide Perovskite Photodetector with Very High Detectivity , 2018, Advanced materials.

[47]  H. Snaith,et al.  Role of Microstructure in Oxygen Induced Photodegradation of Methylammonium Lead Triiodide Perovskite Films , 2017 .

[48]  Bin Su,et al.  Crystallographically Aligned Perovskite Structures for High‐Performance Polarization‐Sensitive Photodetectors , 2017, Advanced materials.

[49]  I. Yahia,et al.  Enhancement of nonlinear optical susceptibility of CuPc films by ITO layer , 2016 .

[50]  Lin-Bao Luo,et al.  Graphene‐β‐Ga2O3 Heterojunction for Highly Sensitive Deep UV Photodetector Application , 2016, Advanced materials.

[51]  Yu Lin,et al.  High-Pressure Single-Crystal Structures of 3D Lead-Halide Hybrid Perovskites and Pressure Effects on their Electronic and Optical Properties , 2016, ACS central science.

[52]  E. Garnett,et al.  Measuring n and k at the Microscale in Single Crystals of CH3NH3PbBr3 Perovskite , 2016 .

[53]  A. Chauhan,et al.  Electro-optical properties of copper phthalocyanines (CuPc) vacuum deposited thin films , 2012 .

[54]  E. A. Payzant,et al.  Metastable Copper‐Phthalocyanine Single‐Crystal Nanowires and Their Use in Fabricating High‐Performance Field‐Effect Transistors , 2009 .

[55]  H. Shan,et al.  A facile molecularly engineered copper (II) phthalocyanine as hole transport material for planar perovskite solar cells with enhanced performance and stability , 2017 .