Towards the Understanding of Printed Documents

Document analysis aims at the transformation of data presented on paper and addressed to human comprehension into a computer-revisable form. The pixel representation of a scanned document must be converted into a structured set of symbolic entities, which are appropriate for the intended kind of computerized information processing. It can be argued that the achieved symbolic description level resembles the degree of understanding acquired by a document analysis system. This interpretation of the term ‘understanding’ shall be explained a little more deeply. An attempt shall be made to clarify the important question: “Up to what level can a machine really understand a given document?” Looking at the many problems still unsolved, this is indeed questionable.

[1]  Schurmann A Multifont Word Recognition System for Postal Address Reading , 1978, IEEE Transactions on Computers.

[2]  Wolfgang Horak,et al.  Office Document Architecture and Office Document Interchange Formats: Current Status of International Standardization , 1985, Computer.

[3]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[4]  Jr. G. Forney,et al.  The viterbi algorithm , 1973 .

[5]  Nils J. Nilsson,et al.  Principles of Artificial Intelligence , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Yoh-Han Pao,et al.  Adaptive pattern recognition and neural networks , 1989 .

[7]  Judea Pearl,et al.  Heuristics : intelligent search strategies for computer problem solving , 1984 .

[8]  E. Mandler,et al.  Combining the Classification Results of Independent Classifiers Based on the Dempster/Shafer Theory of Evidence , 1988 .

[9]  Wolfgang Doster,et al.  A decision theoretic approach to hierarchical classifier design , 1984, Pattern Recognit..

[10]  G. Stanke G. Meyer-Brötz/J. Schürmann, Methoden der automatischen Zeichenerkennung. 154 S. m. 65 Abb. u. 8 Tab. München/Wien 1970. R. Oldenbourg Verlag. Preis brosch. DM 28,— , 1972 .

[11]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[12]  W. S. Meisel,et al.  Least-square methods in abstract pattern recognition , 1968, Inf. Sci..

[13]  Jeffrey A. Barnett,et al.  Computational Methods for a Mathematical Theory of Evidence , 1981, IJCAI.

[14]  Ulrich Kressel,et al.  Polynomklassifikator versus Multilayer-Perzeptron , 1990, DAGM-Symposium.

[15]  Thomas Bayer,et al.  Ein erweiterter Viterbi-Algorithmus zur Berechnung der n besten Wege in zyklenfreien Modellgraphen , 1986, DAGM-Symposium.

[16]  Michael Thompson,et al.  Frontiers of Pattern Recognition , 1975 .

[17]  Eberhard Mandler,et al.  One-pass encoding of connected components in multivalued images , 1990, [1990] Proceedings. 10th International Conference on Pattern Recognition.

[18]  Jack Perkins,et al.  Pattern recognition in practice , 1980 .