Developmental Computing

Since their inception over forty years ago, L-systems have proven to be a useful conceptual and programming framework for modeling the development of plants at different levels of abstraction and different spatial scales. Formally, L-systems offer a means of defining cell complexes with changing topology and geometry. Associated with these complexes are self-configuring systems of equations that represent functional aspects of the models. The close coupling of topology, geometry and computation constitutes a computing paradigm inspired by nature, termed developmental computing. We analyze distinctive features of this paradigm within and outside the realm of biological models.

[1]  Aristid Lindenmayer,et al.  Adding Continuous Components to L-Systems , 1974, L Systems.

[2]  Manfred Nagl,et al.  Applications of Graph Transformations with Industrial Relevance , 2004, Lecture Notes in Computer Science.

[3]  Colin Smith,et al.  L-System Description of Subdivision Curves , 2003, Int. J. Shape Model..

[4]  Olivier Michel,et al.  Computational models for integrative and developmental biology , 2002 .

[5]  Cristina V. Lopes,et al.  Aspect-oriented programming , 1999, ECOOP Workshops.

[6]  E. Mjolsness Developmental Simulations with Cellerator , 2001 .

[7]  Jean-Louis Giavitto,et al.  MGS: a Programming Language for the Transformations of Topological Collections , 2011 .

[8]  Satoshi Matsuoka,et al.  ECOOP'97 — Object-Oriented Programming , 1997, Lecture Notes in Computer Science.

[9]  Przemyslaw Prusinkiewicz,et al.  Numerical methods for transport-resistance sink-source allocation models , 2007 .

[10]  P. Prusinkiewicz,et al.  NUMERICAL METHODS FOR TRANSPORT-RESISTANCE SOURCE–SINK ALLOCATION MODELS , 2007 .

[11]  Jean-Louis Giavitto,et al.  Modeling the topological organization of cellular processes. , 2003, Bio Systems.

[12]  Colin Smith,et al.  Local Specification of Surface Subdivision Algorithms , 2003, AGTIVE.

[13]  Jose Marques Henriques,et al.  FRACTALS IN THE FUNDAMENTAL AND APPLIED SCIENCES , 2007 .

[14]  S. Parter The Use of Linear Graphs in Gauss Elimination , 1961 .

[15]  Richard S. Smith Simulation models of phyllotaxis and morphogenesis in plants , 2007 .

[16]  Yiying Tong,et al.  Discrete differential forms for computational modeling , 2005, SIGGRAPH Courses.

[17]  Stephen Gilmore,et al.  Evaluating the Performance of Skeleton-Based High Level Parallel Programs , 2004, International Conference on Computational Science.

[18]  G. Rozenberg,et al.  Lindenmayer Systems: Impacts on Theoretical Computer Science, Computer Graphics, and Developmental Biology , 2001 .

[19]  P. Prusinkiewicz,et al.  Using L-systems for modeling source-sink interactions, architecture and physiology of growing trees: the L-PEACH model. , 2005, The New phytologist.

[20]  Grzegorz Rozenberg,et al.  L Systems , 1974, Handbook of Formal Languages.

[21]  Przemyslaw Prusinkiewicz,et al.  The Algorithmic Beauty of Plants , 1990, The Virtual Laboratory.

[22]  Philip Haves,et al.  Numerical performance of the SPARK graph-theoretic simulation program , 1999 .

[23]  Przemyslaw Prusinkiewicz,et al.  Graphical applications of L-systems , 1986 .

[24]  A. Lindenmayer Mathematical models for cellular interactions in development. I. Filaments with one-sided inputs. , 1968, Journal of theoretical biology.

[25]  Przemyslaw Prusinkiewicz,et al.  Integrating biomechanics into developmental plant models expressed using L-systems 1 , 2000 .

[26]  A. Lindenmayer Mathematical models for cellular interactions in development. II. Simple and branching filaments with two-sided inputs. , 1968, Journal of theoretical biology.

[27]  Brendan Lane,et al.  The L+C Plant-Modelling Language , 2007 .

[28]  A. Lindenmayer Developmental systems without cellular interactions, their languages and grammars. , 1971, Journal of theoretical biology.

[29]  E. Mjolsness,et al.  Developmental simultations with cellerator , 2001 .

[30]  Przemyslaw Prusinkiewicz,et al.  L-systems: from formalism to programming languages , 1992 .

[31]  Przemyslaw Prusinkiewicz,et al.  L-systems: from the Theory to Visual Models of Plants , 2001 .

[32]  Godin,et al.  A multiscale model of plant topological structures , 1998, Journal of theoretical biology.

[33]  Przemyslaw Prusinkiewicz,et al.  MAppleT: simulation of apple tree development using mixed stochastic and biomechanical models. , 2008, Functional plant biology : FPB.

[34]  Stephen Wolfram,et al.  A New Kind of Science , 2003, Artificial Life.

[35]  Colin Smith On vertex-vertex systems and their use in geometric and biological modelling , 2006 .

[36]  Przemyslaw Prusinkiewicz,et al.  Solving Differential Equations in Developmental Models of Multicellular Structures Expressed Using L-systems , 2004, International Conference on Computational Science.

[37]  A. Lindenmayer,et al.  Models for the control of branch positions and flowering sequences of capitula in mycelis muralis (l , 1987 .