Design and Synthesis of 1,3,5-Triazines or Pyrimidines Containing Dithiocarbamate Moiety as PI3Kα Selective Inhibitors.

[1]  Siew K. Yeap,et al.  Discovery of GDC-0077 (Inavolisib), a Highly Selective Inhibitor and Degrader of Mutant PI3Kα. , 2022, Journal of medicinal chemistry.

[2]  Yu Wang,et al.  Based on 2-(difluoromethyl)-1-[4,6-di(4-morpholinyl)-1,3,5-triazin-2-yl]-1H-benzimidazole (ZSTK474), design, synthesis and biological evaluation of novel PI3Kα selective inhibitors. , 2022, Bioorganic chemistry.

[3]  A. Jemal,et al.  Cancer statistics, 2022 , 2022, CA: a cancer journal for clinicians.

[4]  R. Liu,et al.  Biomimetic Small-Molecule Self-Assembly of PI3K Inhibitor Integrated with Immunomodulator to Amplify Anticancer Efficacy , 2021, Chemical Engineering Journal.

[5]  K. Okkenhaug,et al.  PI3K inhibitors are finally coming of age , 2021, Nature Reviews Drug Discovery.

[6]  Xiaoqing Lv,et al.  Structural optimization towards promising β-methyl-4-acrylamido quinoline derivatives as PI3K/mTOR dual inhibitors for anti-cancer therapy: The in vitro and in vivo biological evaluation. , 2021, European journal of medicinal chemistry.

[7]  Ping Chen,et al.  Structure-Based Drug Design and Synthesis of PI3Kα-Selective Inhibitor (PF-06843195). , 2020, Journal of medicinal chemistry.

[8]  Juntuo Zhou,et al.  Discovery of 2,4-diarylaminopyrimidine derivatives bearing dithiocarbamate moiety as novel FAK inhibitors with antitumor and anti-angiogenesis activities. , 2019, European journal of medicinal chemistry.

[9]  Michael J. Stocks,et al.  Class 1 PI3K Clinical Candidates and Recent Inhibitor Design Strategies: A Medicinal Chemistry Perspective. , 2019, Journal of medicinal chemistry.

[10]  Lewis C. Cantley,et al.  The PI3K Pathway in Human Disease , 2017, Cell.

[11]  R. Copeland,et al.  Design, synthesis and cytotoxicity studies of dithiocarbamate ester derivatives of emetine in prostate cancer cell lines. , 2015, Bioorganic & medicinal chemistry.

[12]  B. Ross,et al.  Dual inhibition of allosteric mitogen-activated protein kinase (MEK) and phosphatidylinositol 3-kinase (PI3K) oncogenic targets with a bifunctional inhibitor. , 2015, Bioorganic & medicinal chemistry.

[13]  V. Bala,et al.  Chemical and medicinal versatility of dithiocarbamates: an overview. , 2014, Mini reviews in medicinal chemistry.

[14]  J. Bendell,et al.  Phase I dose-escalation and -expansion study of buparlisib (BKM120), an oral pan-Class I PI3K inhibitor, in patients with advanced solid tumors , 2014, Investigational New Drugs.

[15]  C. Rommel,et al.  PI3K and cancer: lessons, challenges and opportunities , 2014, Nature Reviews Drug Discovery.

[16]  Lu Lu,et al.  Small molecule fusion inhibitors: design, synthesis and biological evaluation of (Z)-3-(5-(3-benzyl-4-oxo-2-thioxothiazolidinylidene)methyl)-N-(3-carboxy-4-hydroxy)phenyl-2,5-dimethylpyrroles and related derivatives targeting HIV-1 gp41. , 2013, Bioorganic & medicinal chemistry.

[17]  D. Mobley,et al.  Triazole-dithiocarbamate based selective lysine specific demethylase 1 (LSD1) inactivators inhibit gastric cancer cell growth, invasion, and migration. , 2013, Journal of medicinal chemistry.

[18]  G. Çiftçi,et al.  Synthesis and Biological Evaluation of Some Pyrazoline Derivatives Bearing a Dithiocarbamate Moiety as New Cholinesterase Inhibitors , 2013, Archiv der Pharmazie.

[19]  Zaheer Ul-Haq,et al.  Synthesis, biological evaluation, and molecular docking studies of benzyl, alkyl and glycosyl [2-(arylamino)-4,4-dimethyl-6-oxo-cyclohex-1-ene]carbodithioates, as potential immunomodulatory and immunosuppressive agents. , 2012, Bioorganic & medicinal chemistry.

[20]  C. Supuran,et al.  Dithiocarbamates are strong inhibitors of the beta-class fungal carbonic anhydrases from Cryptococcus neoformans, Candida albicans and Candida glabrata. , 2012, Bioorganic & medicinal chemistry letters.

[21]  Claire L. Lill,et al.  Synthesis and biological evaluation of novel analogues of the pan class I phosphatidylinositol 3-kinase (PI3K) inhibitor 2-(difluoromethyl)-1-[4,6-di(4-morpholinyl)-1,3,5-triazin-2-yl]-1H-benzimidazole (ZSTK474). , 2011, Journal of medicinal chemistry.

[22]  B. Vanhaesebroeck,et al.  The emerging mechanisms of isoform-specific PI3K signalling , 2010, Nature Reviews Molecular Cell Biology.

[23]  Pixu Liu,et al.  Targeting the phosphoinositide 3-kinase pathway in cancer , 2009, Nature Reviews Drug Discovery.

[24]  Holger Gerhardt,et al.  Angiogenesis selectively requires the p110α isoform of PI3K to control endothelial cell migration , 2008, Nature.

[25]  D. Giustarini,et al.  Protein S-glutathionylation and platelet anti-aggregating activity of disulfiram. , 2006, Biochemical pharmacology.

[26]  Ji Luo,et al.  The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism , 2006, Nature Reviews Genetics.

[27]  S. Hirono,et al.  Antitumor activity of ZSTK474, a new phosphatidylinositol 3-kinase inhibitor. , 2006, Journal of the National Cancer Institute.

[28]  H. Simmonds,et al.  Pyrimidine pathways in health and disease. , 2005, Trends in molecular medicine.

[29]  A. Bilancio,et al.  Signalling by PI3K isoforms: insights from gene-targeted mice. , 2005, Trends in biochemical sciences.

[30]  H. Sasahara,et al.  Synthesis and antitumor activity of benzimidazolyl-1,3,5-triazine and benzimidazolylpyrimidine derivatives. , 2000, Chemical & pharmaceutical bulletin.

[31]  S. Yaguchi,et al.  In vitro cytotoxicity of imidazolyl-1,3,5-triazine derivatives. , 1997, Biological & pharmaceutical bulletin.