Density-functional study of Au n ( n = 2 – 2 0 ) clusters: Lowest-energy structures and electronic properties

We have investigated the lowest-energy structures and electronic properties of the ${\mathrm{Au}}_{n}(n=2--20)$ clusters based on density-functional theory with local density approximation. The small ${\mathrm{Au}}_{n}$ clusters adopt planar structures up to $n=6.$ Flat cage structures are preferred in the range of $n=10--14$ and a structural transition from flat-cage-like structure to compact near-spherical structure is found around $n=15.$ The most stable configurations obtained for ${\mathrm{Au}}_{13}$ and ${\mathrm{Au}}_{19}$ clusters are amorphous instead of icosahedral or fcc like, while the electronic density of states sensitively depends on the cluster geometry. Dramatic odd-even alternative behaviors are obtained in the relative stability, highest occupied and lowest unoccupied molecular orbit gaps, and ionization potentials of gold clusters. The size evolution of the electronic properties is discussed and the theoretical ionization potentials of ${\mathrm{Au}}_{n}$ clusters compare well with experiments.

[1]  Robert L. Whetten,et al.  Isolation of Smaller Nanocrystal Au Molecules: Robust Quantum Effects in Optical Spectra , 1997 .

[2]  Perdew Energetics of charged metallic particles: From atom to bulk solid. , 1988, Physical review. B, Condensed matter.

[3]  Jinlan Wang,et al.  Structure and electronic properties of Ge n (n=2-25) clusters from density-functional theory , 2001 .

[4]  J. Storhoff,et al.  A DNA-based method for rationally assembling nanoparticles into macroscopic materials , 1996, Nature.

[5]  K. J. Taylor,et al.  Ultraviolet photoelectron spectra of coinage metal clusters , 1992 .

[6]  D. Wood Classical size dependence of the work function of small metallic spheres , 1981 .

[7]  W. Schulze,et al.  Electronic Structures and Related Properties. Electron Impact Ionization Potentials of Gold and Silver Clusters Men, n ≤ 22 , 1992 .

[8]  M. Jacob The European Physical Society , 1993 .

[9]  Tianxin Li,et al.  A genetic algorithm study on the most stable disordered and ordered configurations of Au38–55 , 2000 .

[10]  Guanghou Wang,et al.  Structure and ionization potential of coinage-metal clusters , 1994 .

[11]  Jijun Zhao,et al.  Tight-binding study of structural and electronic properties of silver clusters , 2001 .

[12]  R. P. Andres,et al.  Coulomb Staircase at Room Temperature in a Self-Assembled Molecular Nanostructure , 1996, Science.

[13]  Posada-Amarillas,et al.  Structural and vibrational analysis of amorphous Au55 clusters. , 1996, Physical review. B, Condensed matter.

[14]  P. Schultz,et al.  Organization of 'nanocrystal molecules' using DNA , 1996, Nature.

[15]  Peter W. Stephens,et al.  Structural evolution of smaller gold nanocrystals: The truncated decahedral motif , 1997 .

[16]  M. Broyer,et al.  Optical properties of gold clusters in the size range 2-4 nm , 1998 .

[17]  B. Wang,et al.  Novel structures and properties of gold nanowires. , 2001, Physical review letters.

[18]  Jijun Zhao Density-functional study of structures and electronic properties of Cd clusters , 2001 .

[19]  A. D. Corso,et al.  Structural and electronic properties of small Cun clusters using generalized-gradient approximations within density functional theory , 1998 .

[20]  Walt A. de Heer,et al.  The physics of simple metal clusters: experimental aspects and simple models , 1993 .

[21]  B. Delley An all‐electron numerical method for solving the local density functional for polyatomic molecules , 1990 .

[22]  D. Sánchez-Portal,et al.  Metallic bonding and cluster structure , 2000 .

[23]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[24]  Roy L. Johnston,et al.  Modelling gold clusters with an empirical many-body potential , 2000 .

[25]  I. L. Garzón,et al.  Ab initio study of small gold clusters , 1999 .

[26]  W. Andreoni,et al.  Structural and electronic properties of sodium microclusters (n=2–20) at low and high temperatures: New insights from ab initio molecular dynamics studies , 1991 .

[27]  B. R. Johnson,et al.  Vibrational autodetachment spectroscopy of Au−6 : Image‐charge‐bound states of a gold ring , 1990 .

[28]  Notker Rösch,et al.  From clusters to bulk: A relativistic density functional investigation on a series of gold clusters Aun, n=6,…,147 , 1997 .

[29]  Uzi Landman,et al.  Gold clusters(AuN,2<~N<~10)and their anions , 2000 .

[30]  J. Joannopoulos,et al.  Structural patterns of unsupported gold clusters , 2001 .

[31]  K. Koga,et al.  IN SITU GRAZING-INCIDENCE X-RAY-DIFFRACTION AND ELECTRON-MICROSCOPIC STUDIES OF SMALL GOLD CLUSTERS , 1998 .

[32]  K. Balasubramanian,et al.  CASSCF/CI calculations of low‐lying states and potential energy surfaces of Au3 , 1987 .

[33]  Karo Michaelian,et al.  Structure and energetics of Ni, Ag, and Au nanoclusters , 1999 .

[34]  Yang Shi,et al.  Time-resolved photodissociation and threshold collision-induced dissociation of anionic gold clusters , 2000 .

[35]  J. Koutecký,et al.  Effective core potential‐configuration interaction study of electronic structure and geometry of small neutral and cationic Agn clusters: Predictions and interpretation of measured properties , 1993 .

[36]  W. Andreoni,et al.  Gold and platinum microclusters and their anions: comparison of structural and electronic properties , 2000 .

[37]  C. Kittel Introduction to solid state physics , 1954 .

[38]  Jonathan Doye,et al.  Global minima for transition metal clusters described by Sutton–Chen potentials , 1997 .

[39]  Ho,et al.  Molecular geometry optimization with a genetic algorithm. , 1995, Physical review letters.

[40]  D. Sánchez-Portal,et al.  Lowest Energy Structures of Gold Nanoclusters , 1998 .

[41]  U. Landman,et al.  Structures and spectra of gold nanoclusters and quantum dot molecules , 1999 .

[42]  Rosato,et al.  Tight-binding potentials for transition metals and alloys. , 1993, Physical review. B, Condensed matter.

[43]  P. S. Bechthold,et al.  A comparison of photoelectron spectroscopy and two-photon ionization spectroscopy : excited states of Au2, Au3, and Au4 , 1994 .