Design and Analysis of Composite Rotor Blades for Active/Passive Vibration Reduction.

The problem of vibration has limited the use of helicopters in both civil and military applications. In this research, further analysis has been performed for the various on-blade approaches available for vibration reduction using a unique optimization framework. For passive optimization, an aeroelastic environment with several well-established analysis codes from different sources was developed that can be used to analyze and design composite rotor blades for minimum vibration or maximum performance. This design environment enables conceptual/early preliminary multidisciplinary rotor blade design with realistic structural properties for modern composite rotor blades. For the design of a rotor blade with active twist, a new design strategy was introduced where the amplitude of dynamic twist is maximized. The optimization framework included the aeroelastic design environment described earlier along with surrogate based optimization technique. The surrogate based optimization is performed in combination with Efficient Global Optimization algorithm. Results showed that the amplitude of dynamic twist is a true indicator of control authority of active twist rotor for vibration reduction. Furthermore, the optimization framework was extended to include discrete design variables in the optimization and the solution for mixed-variable design problem was obtained using three different techniques. After modifying the aeroelastic analysis to account for the presence of active flaps, a Mach-scaled composite rotor blade was designed using the same mixed design variable optimization framework to enhance the vibration reduction capabilities of the active flap. In this case also, the amplitude of dynamic twist was used as the objective function and the analysis was carried out at three different spanwise flap locations. This thesis also includes work related to the design and fabrication of a composite rotor blade with dual flaps which can be tested in a Mach-scaled spin test stand. Finally, the use of camber actuation with quadratic and cubic camber deformation shapes for vibration reduction and performance enhancement in dynamic stall region was studied. The aeroelastic analysis was augmented with a modified version of the ONERA dynamic stall model that accounts for morphing airfoil section.

[1]  C. Cesnik,et al.  A composite rotor blade structural design environment for aeromechanical assessments in conceptual and preliminary design , 2012 .

[2]  Carlos E. S. Cesnik,et al.  Cross-sectional analysis of nonhomogeneous anisotropic active slender structures , 2005 .

[3]  Carlos E. S. Cesnik,et al.  New hybrid optimization for design of active twist rotors , 2013 .

[4]  Hughes Helicopters,et al.  On Developing and Flight Testing a Higher Harmonic Control System , 1983 .

[5]  Andy J. Keane,et al.  Engineering Design via Surrogate Modelling - A Practical Guide , 2008 .

[6]  Berend G. van der Wall,et al.  ABC Rotor Blades: Design, Manufacturing and Testing , 2005 .

[7]  Ranjan Ganguli,et al.  Using the Complete Authority of Multiple Active Trailing-edge Flaps for Helicopter Vibration Control , 2008 .

[8]  Matthew L. Wilbur,et al.  Structural Optimization of Active-Twist Rotor Blades , 2011 .

[9]  Inderjit Chopra,et al.  Wind-Tunnel Testing of Rotor with Individually Controlled Trailing-Edge Flaps for Vibration Reduction , 2008 .

[10]  F. Jensen,et al.  Actuator design for the active trailing edge of a helicopter rotor blade , 2007 .

[11]  Wayne Johnson,et al.  Requirements for Next Generation Comprehensive Analysis of Rotorcraft , 2008 .

[12]  Kusum Deep,et al.  A real coded genetic algorithm for solving integer and mixed integer optimization problems , 2009, Appl. Math. Comput..

[13]  Damiano Pasini,et al.  Optimum stacking sequence design of composite materials Part II: Variable stiffness design , 2010 .

[14]  A. E. Staple,et al.  Minimisation of Helicopter Vibration through Active Control of Structural Response , 1987 .

[15]  Friedrich K. Straub,et al.  Design and testing of a double X-frame piezoelectric actuator , 2000, Smart Structures.

[16]  Bryan Glaz,et al.  Active/Passive Optimization of Helicopter Rotor Blades for Improved Vibration, Noise, and Performance Characteristics. , 2008 .

[17]  Walter Gerstenberger,et al.  The Rotary Round Table: Practical Aspects of Vibration Control , 1957 .

[18]  Dennis S. Bernstein,et al.  Rotor performance enhancement and vibration reduction in presence of dynamic stall using actively controlled flaps , 2008 .

[19]  Ron Barrett,et al.  BENCH-TOP CHARACTERIZATION OF AN ACTIVE ROTOR BLADE FLAP SYSTEM INCORPORATING C-BLOCK ACTUATORS , 1998 .

[20]  Victor Giurgiutiu,et al.  Power and energy issues in the induced-strain actuation for aerospace adaptive control , 1996 .

[21]  Bryan Glaz,et al.  Determination of optimum camber distribution in rotating wings with deformable airfoils for vibration reduction and performance enhancement using surrogate modeling , 2010 .

[22]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[23]  Jonathan D. Bartley-Cho,et al.  Development of High-rate, Adaptive Trailing Edge Control Surface for the Smart Wing Phase 2 Wind Tunnel Model , 2004 .

[24]  M. Kretz,et al.  Research in multicyclic and active control of rotary wings , 1975 .

[25]  S. Hall,et al.  Development of a piezoelectric servoflap for helicopter rotor control , 1996 .

[26]  Victor Giurgiutiu,et al.  Active-Materials Induced-Strain Actuation for Aeroelastic Vibration Control , 2000 .

[27]  Carlos E. S. Cesnik,et al.  Integral Twist Actuation of Helicopter Rotor Blades for Vibration Reduction , 2013 .

[28]  Carlos E. S. Cesnik,et al.  Low-Speed Aeroelastic Modeling of Very Flexible Slender Wings with Deformable Airfoils , 2008 .

[29]  Carlos E. S. Cesnik,et al.  Performance enhancement in dynamic stall condition using active camber deformation , 2015 .

[30]  Ruth M. Heffernan,et al.  Vibration analysis of the SA349/2 helicopter , 1991 .

[31]  David A. Peters,et al.  A State-Space Airloads Theory for Flexible Airfoils , 2006 .

[32]  G. A. Pierce,et al.  Helicopter vibration suppression using simple pendulum absorbers on the rotor blade , 1984 .

[33]  Mark Sutton,et al.  Optimization framework for the dynamic analysis and design of active twist rotors , 2012 .

[34]  Rafael Palacios Nieto,et al.  Asymptotic models of integrally-strained slender structures for high-fidelity nonlinear aeroelastic analysis , 2005 .

[35]  Sergio Pellegrino,et al.  Topology optimization of adaptive compliant aircraft wing leading edge , 2007 .

[36]  Raphael T. Haftka,et al.  Surrogate-based Analysis and Optimization , 2005 .

[37]  Inderjit Chopra,et al.  Status of Application of Smart Structures Technology to Rotorcraft Systems , 2000 .

[38]  Bryan Glaz,et al.  The AVINOR Aeroelastic Simulation Code and its Application to Reduced Vibration Composite Rotor Blade Design , 2009 .

[39]  Richard S. Teal,et al.  Higher Harmonic Control: Wind Tunnel Demonstration of Fully Effective Vibratory Hub Force Suppression , 1985 .

[40]  T. Simpson,et al.  Use of Kriging Models to Approximate Deterministic Computer Models , 2005 .

[41]  Thomas R. Norman,et al.  FULL-SCALE WIND TUNNEL TEST OF AN INDIVIDUAL BLADE CONTROL SYSTEM FOR A UH-60 HELICOPTER , 2002 .

[42]  Robert A. Ormiston,et al.  SMALL-SCALE ROTOR EXPERIMENTS WITH ON-BLADE ELEVONS TO REDUCE BLADE VIBRATORY LOADS IN FORWARD FLIGHT , 1998 .

[43]  Jianhua Zhang,et al.  Active-Passive Hybrid Optimization of Rotor Blades With Trailing Edge Flaps , 2000 .

[44]  Inderjit Chopra,et al.  Analysis and Testing of Mach-Scaled Rotor with Trailing-Edge Flaps , 2000 .

[45]  Victor Giurgiutiu,et al.  RECENT ADVANCES IN SMART-MATERIAL ROTOR CONTROL ACTUATION. , 2000 .

[46]  Carlos E. S. Cesnik,et al.  On the modeling of integrally actuated helicopter blades , 2001 .

[47]  Carl P. Tilmann,et al.  Design and application of compliant mechanisms for morphing aircraft structures , 2003, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[48]  David B. Domzalski,et al.  Development of a piezoelectric actuator for trailing edge flap control of full scale rotor blades , 2001 .

[49]  Bryan Glaz,et al.  Vibration Reduction and Performance Enhancement of Helicopter Rotors Using an Active/Passive Approach , 2008 .

[50]  F. Farassat,et al.  Modeling aerodynamically generated sound of helicopter rotors , 2003 .

[51]  Johannes Riemenschneider,et al.  Validation of Active Twist Modeling Based on Whirl Tower Tests , 2009 .

[52]  Ilan Kroo,et al.  Flutter Suppression Using Micro-Trailing Edge Effectors , 2003 .

[53]  Samuel T. IJsselmuiden,et al.  Composite Laminate Optimization with Discrete Variables , 2010 .

[54]  Inderjit Chopra,et al.  Review of State of Art of Smart Structures and Integrated Systems , 2002 .

[55]  Peretz P. Friedmann,et al.  Rotary wing aeroelasticity - A historical perspective and some current trends , 2003 .

[56]  André de Boer,et al.  Continuous-discrete variable optimization on composites using kriging surrogate model , 2011 .

[57]  Peretz P. Friedmann,et al.  Rotary-wing aeroelastic scaling and its implications for adaptive-materials-based actuation , 1999, Smart Structures.

[58]  John O'Neill,et al.  Whirl and Wind Tunnel Testing of the Sikorsky Active Flap Demonstration Rotor , 2011 .

[59]  Li Liu,et al.  Helicopter vibration reduction throughout the entire flight envelope using surrogate-based optimization , 2007 .

[60]  Ranjan Ganguli,et al.  Survey of Recent Developments in Rotorcraft Design Optimization , 2004 .

[61]  Carlos E. S. Cesnik,et al.  IXGEN - A modeling tool for the preliminary design of composite rotor blades , 2012 .

[63]  Roberto Celi,et al.  Recent Applications of Design Optimization to Rotorcraft-A Survey , 1999 .

[64]  Inderjit Chopra,et al.  Effects of higher harmonic control on rotor performance and control loads , 1992 .

[65]  Carlos E. S. Cesnik,et al.  Closed-loop control test of the NASA/Army/MIT active twist rotor for vibration reduction , 2003 .

[66]  Kyle Brian Collins,et al.  A multi-fidelity framework for physics based rotor blade simulation and optimization , 2008 .

[67]  J. N. Kudva,et al.  Overview of the DARPA Smart Wing Project , 2004 .

[68]  Peretz P. Friedmann,et al.  Vibration reduction in rotorcraft using active control - A comparison of various approaches , 1995 .

[69]  Matthew L. Wilbur,et al.  Dynamic response of active twist rotor blades , 2000 .

[70]  Joaquim R. R. A. Martins,et al.  A laminate parametrization technique for discrete ply-angle problems with manufacturing constraints , 2013 .

[71]  Matthew L. Wilbur,et al.  The effect of tip geometry on active-twist rotor response , 2005 .

[72]  Ranjan Ganguli,et al.  Optimization of Helicopter Rotor Using Polynomial and Neural Network Metamodels , 2011 .

[73]  Boeing Vertol Co.,et al.  Active Control of The Helicopter Rotor for Vibration Reduction , 1980 .

[74]  Li Liu,et al.  Computational Study of Microflaps with Application to Vibration Reduction in Helicopter Rotors , 2011 .

[75]  Anubhav Datta,et al.  An Assessment of the State-of-the-art in Multidisciplinary Aeromechanical Analyses , 2008 .

[76]  Robert G. Loewy,et al.  Helicopter Vibrations: A Technological Perspective , 1984 .

[77]  Paolo Mantegazza,et al.  Characterisation of Anisotropic, Non-Homogeneous Beam Sections with Embedded Piezo-Electric Materials , 1997 .

[78]  Ch. Kessler,et al.  Active rotor control for helicopters: individual blade control and swashplateless rotor designs , 2011 .

[79]  Friedrich K. Straub,et al.  Rotors with Trailing Edge Flaps: Analysis and Comparison with Experimental Data , 1998 .

[80]  Ahmed A. Hassan,et al.  Smart Material-Actuated Rotor Technology – SMART , 2004 .

[81]  Norman D. Ham,et al.  Helicopter individual-blade-control research at MIT 1977-1985 , 1986 .

[82]  S. Hall,et al.  Design of a high efficiency, large stroke, electromechanical actuator , 1999 .

[83]  Ranjan Ganguli,et al.  Surrogate based design optimisation of composite aerofoil cross-section for helicopter vibration reduction , 2012, The Aeronautical Journal (1968).

[84]  Carlos E. S. Cesnik,et al.  On the twist performance of a multiple-cell active helicopter blade , 2001 .

[85]  Friedrich K. Straub,et al.  SMART Rotor Development and Wind Tunnel Test , 2009 .

[86]  W. Keats Wilkie,et al.  Design and Manufacturing of a Model-scale Active Twist Rotor Prototype Blade , 2008 .

[87]  Li Liu,et al.  Rotorcraft Vibration Reduction and Noise Prediction Using a Unified Aeroelastic Response Simulation , 2003 .

[88]  Uwe T.P. Arnold,et al.  Closed loop IBC results from CH-53G flight tests , 2005 .

[89]  Holger Hanselka,et al.  Calculations and experimental resulte of the adaptive twist control concept of reduced helicopter vibrations and noise emissions.Proceedings: The main sources of helicopter vibration and noise emissions and adaptive concepts to reduce them. , 1996 .

[90]  G. Reichert,et al.  Helicopter vibration control: a survey , 1980 .

[91]  Andrew,et al.  Design Optimization of a Controllable Camber Rotor Airfoil , 2005 .

[92]  Dimitris C. Lagoudas,et al.  Development of a Shape-Memory-Alloy Actuated Biomimetic Hydrofoil , 2002 .

[93]  Sridhar Kota,et al.  Static Shape Control of Smart Structures Using Compliant Mechanisms , 1999 .

[94]  Carlos E. S. Cesnik,et al.  Modeling, design, and testing of the NASA/Army/MIT active twist rotor prototype blade , 1999 .

[95]  Paolo Mantegazza,et al.  Analysis of an actively twisted rotor by multibody global modeling , 2001 .

[96]  E. Barkanov,et al.  Design of helicopter rotor blades with actuators made of a piezomacrofiber composite , 2008 .

[97]  Thomas J. Santner,et al.  Design and analysis of computer experiments , 1998 .

[98]  Smith,et al.  Finite-State Aeroelastic Modeling of Rotating Wings with Deformable Airfoils , 2008 .

[99]  Rolf Lammering,et al.  Beam Finite Elements for Rotating Piezoelectric Fiber Composite Structures , 2006 .

[100]  Norman M. Wereley,et al.  Pneumatic artificial muscles for trailing edge flap actuation: a feasibility study , 2011 .

[101]  Johannes Riemenschneider,et al.  Development of active twist rotors at the German Aerospace Center (DLR) , 2011 .

[102]  Carlos E. S. Cesnik,et al.  A Multidisciplinary Design Environment for Composite Rotor Blades , 2012 .

[103]  Ranjan Ganguli,et al.  Optimal Placement of Piezoelectric Actuated Trailing-Edge Flaps for Helicopter Vibration Control , 2009 .

[104]  Peretz P. Friedmann,et al.  Simultaneous Vibration and Noise Reduction in Rotorcraft Using Aeroelastic Simulation , 2004 .

[105]  Ch. Kessler,et al.  Active rotor control for helicopters: motivation and survey on higher harmonic control , 2011 .

[106]  Carlos E. S. Cesnik,et al.  Optimization design framework for integrally twisted helicopter blades , 2004 .

[107]  Mustafa Emre Gunduz,et al.  Software integration for automated stability analysis and design optimization of a bearingless rotor blade , 2010 .

[108]  Michael James Sasena,et al.  Flexibility and efficiency enhancements for constrained global design optimization with kriging approximations. , 2002 .

[109]  Peretz P. Friedmann,et al.  Rotary-wing aeroelasticity - Current status and future trends , 2001 .

[110]  Peretz P. Friedmann,et al.  Helicopter vibration reduction using structural optimization with aeroelastic/multidisciplinary constraints - A survey , 1991 .

[111]  Richard L. Bielawa Analytic investigation of helicopter rotor blade appended aeroelastic devices , 1984 .

[112]  E. Muir,et al.  Effect of Piezoceramic Actuator Hysteresis on Helicopter Vibration and Noise Reduction , 2012 .

[113]  Peretz P. Friedmann,et al.  New developments in vibration reduction with actively controlled trailing edge flaps , 2001 .

[114]  Damiano Pasini,et al.  Optimum stacking sequence design of composite materials Part I: Constant stiffness design , 2009 .

[115]  Dieter Roth,et al.  Trailing Edge Flaps for Active Rotor Control - Aeroelastic Characteristics of the ADASYS Rotor System , 2006 .

[116]  Stephen A. Jacklin,et al.  Reduction of Helicopter BVI Noise, Vibration, and Power Consumption Through Individual Blade Control , 1994 .

[117]  Peretz P. Friedmann,et al.  Coupled helicopter rotor/flexible fuselage aeroelastic model for control of structural response , 2000 .

[118]  John P. Rodgers,et al.  Development of an integral twist-actuated rotor blade for individual blade control , 1999 .

[119]  Adeel S. Khalid,et al.  Development and implementation of rotorcraft preliminary design methodology using multidisciplinary design optimization , 2006 .

[120]  Aeroflightdynamics Directorate,et al.  AEROMECHANICS OF THE ACTIVE ELEVON ROTOR , 2005 .

[121]  David A. Peters,et al.  Finite state induced flow models. II - Three-dimensional rotor disk , 1995 .

[122]  Edward C. Smith,et al.  Induced-Shear Piezoelectric Actuators for Active Twist Rotor Blades , 2002 .

[123]  Ilan Kroo,et al.  Development and Testing of an Experimental Aeroelastic Model with Micro-Trailing Edge Effectors , 2003 .

[124]  Farhan Gandhi,et al.  Skin design studies for variable camber morphing airfoils , 2008 .

[125]  Matthew L. Wilbur,et al.  Aerodynamic Design Study of an Advanced Active Twist Rotor , 2003 .

[126]  Carlos E. S. Cesnik,et al.  Effective cross-section distribution of anisotropic piezocomposite actuators for wing twist , 2003, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[127]  C. E. Hammond,et al.  Wind Tunnel Results Showing Rotor Vibratory Loads Reduction Using Higher Harmonic Blade Pitch , 1980 .

[128]  Dewey H. Hodges,et al.  Multilevel-Multiphase Optimization of Composite Rotor Blade with Surrogate Model , 2007 .

[129]  Joaquim R. R. A. Martins,et al.  A Regularized Discrete Laminate Parametrization Technique with Applications to Wing-Box Design Optimization , 2012 .

[130]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[131]  Friedrich K Straub,et al.  A feasibility study of using smart materials for rotor control , 1993 .

[132]  Jun-Sik Kim Design and Analysis of Rotor Systems with Multiple Trailing Edge Flaps and Resonant Actuators , 2005 .

[133]  Eric Frederick Prechtl,et al.  Design and implementation of a piezoelectric servo-flap actuation system for helicopter rotor individual blade control , 2000 .

[134]  Mary Frecker,et al.  DESIGN OF A CONFORMABLE ROTOR AIRFOIL USING DISTRIBUTED PIEZOELECTRIC ACTUATION , 2003 .

[135]  E. Barkanov,et al.  Optimal Design of the Active Twist for Helicopter Rotor Blades with C-Spar , 2008 .

[136]  A. Z. Lemnios,et al.  Wind Tunnel Investigation of the Controllable Twist Rotor Performance and Dynamic Behavior , 1977 .

[137]  Matthew L. Wilbur,et al.  A Parametric Study of the Structural Design for an Advanced Active Twist Rotor , 2005 .

[138]  Loren A. Ahaus,et al.  An airloads theory for morphing airfoils in dynamic stall with experimental correlation , 2010 .

[139]  I. Chopra,et al.  Design of piezostack-driven trailing-edge flap actuator for helicopter rotors , 2001 .

[140]  P. Leconte EXPERIMENTAL ASSESSMENT AND FURTHER DEVELOPMENT OF AMPLIFIED PIEZO ACTUATORS FOR ACTIVE FLAP DEVICES , 2002 .

[141]  Marco Morandini,et al.  Optimal Design of an Active Twist 1:2.5 Scale Rotor Blade , 2005 .

[142]  Carlos E. S. Cesnik,et al.  Geometrically Nonlinear Theory of Composite Beams with Deformable Cross Sections , 2008 .

[143]  Carlos E. S. Cesnik,et al.  Design optimization of active twist rotor blades , 2010 .

[144]  William G. Bousman,et al.  Aerodynamic Characteristics of SC1095 and SC1094 R8 Airfoils , 2003 .

[145]  Victor Giurgiutiu,et al.  Review of Smart-Materials Actuation Solutions for Aeroelastic and Vibration Control , 2000 .

[146]  James G. Coder,et al.  CFD Investigation of Unsteady Rotorcraft Airfoil Aerodynamics: MiTEs and Dynamic Stall , 2011 .

[147]  Roger M. Goodall,et al.  Active control of helicopter vibration , 1994 .

[148]  Dewey H. Hodges,et al.  Cross-Sectional Design of Composite Rotor Blades , 2008 .

[149]  Friedrich K. Straub,et al.  Wind Tunnel Test of an Active Flap Rotor: BVI Noise and Vibration Reduction , 1995 .

[150]  Yasutada Tanabe,et al.  Application of an active device for helicopter noise reduction in JAXA , 2010 .

[151]  Peter,et al.  Recent advances in Eurocopter's passive and active vibration control , 2008 .

[152]  Lakshmi N. Sankar,et al.  Aerodynamic Evaluation of Miniature Trailing-Edge Effectors for Active Rotor Control , 2010 .

[153]  Peretz P. Friedmann,et al.  Numerical Evaluation of Microflaps for On Blade Control of Noise and Vibration , 2011 .