Community Ecology Processes , Models , and Applications

[1]  J. Elser,et al.  Stoichiometric tracking of soil nutrients by a desert insect herbivore , 2003 .

[2]  J. Terborgh,et al.  Size‐Abundance Relationships in an Amazonian Bird Community: Implications for the Energetic Equivalence Rule , 2003, The American Naturalist.

[3]  F. H. Rodd,et al.  Evaluation of the Rate of Evolution in Natural Populations of Guppies (Poecilia reticulata) , 1997, Science.

[4]  A. Fitter Influence of mycorrhizal infection on competition for phosphorus and potassium by two grasses , 1977 .

[5]  Jan G. M. Roelofs,et al.  The effects of air‐borne nitrogen pollutants on species diversity in natural and semi‐natural European vegetation , 1998 .

[6]  Scott L Wing,et al.  Transient Floral Change and Rapid Global Warming at the Paleocene-Eocene Boundary , 2005, Science.

[7]  R. Denison,et al.  Why are most rhizobia beneficial to their plant hosts, rather than parasitic? , 2004, Microbes and infection.

[8]  K. Winemiller Spatial and Temporal Variation in Tropical Fish Trophic Networks , 1990 .

[9]  P. Yodzis,et al.  DIFFUSE EFFECTS IN FOOD WEBS , 2000 .

[10]  Marguerite Hugueney,et al.  Evolution and escalation, an ecological history of life , 1988 .

[11]  W. Hamilton,et al.  The evolution of cooperation. , 1984, Science.

[12]  Kathleen H. Keeler,et al.  The Ecology of Mutualism , 1982 .

[13]  S. S. Lee,et al.  Mycorrhizas and ecosystem processes in tropical rain forest: implications for diversity , 2005 .

[14]  J. Lawton,et al.  Invertebrate predator-prey body size relationships: an explanation for upper triangular food webs and patterns in food web structure? , 1987, Oecologia.

[15]  E. Kiers,et al.  Lifestyle alternatives for rhizobia: mutualism, parasitism, and forgoing symbiosis. , 2004, FEMS microbiology letters.

[16]  Diego P. Vázquez,et al.  ASYMMETRIC SPECIALIZATION: A PERVASIVE FEATURE OF PLANT-POLLINATOR INTERACTIONS , 2004 .

[17]  A. Solow,et al.  ON LUMPING SPECIES IN FOOD WEBS , 1998 .

[18]  Michel Loreau,et al.  Functional Diversity of Plant–Pollinator Interaction Webs Enhances the Persistence of Plant Communities , 2005, PLoS biology.

[19]  J. Sprent,et al.  Occurrence of nodulation in the Leguminosae. , 1989, The New phytologist.

[20]  Mathew A. Leibold,et al.  CYCLIC ASSEMBLY TRAJECTORIES AND SCALE‐DEPENDENT PRODUCTIVITY–DIVERSITY RELATIONSHIPS , 2004 .

[21]  Mark G. Tjoelker,et al.  Universal scaling of respiratory metabolism, size and nitrogen in plants , 2006, Nature.

[22]  M. Allen,et al.  The mediation of competition by mycorrhizae in successional and patchy environments. , 1990 .

[23]  Yiqi Luo,et al.  Divergence of reproductive phenology under climate warming , 2007, Proceedings of the National Academy of Sciences.

[24]  D. Read,et al.  Mutualistic mycorrhiza in orchids: evidence from plant-fungus carbon and nitrogen transfers in the green-leaved terrestrial orchid Goodyera repens. , 2006, The New phytologist.

[25]  M. C. Urban Maladaptation and Mass Effects in a Metacommunity: Consequences for Species Coexistence , 2006, The American Naturalist.

[26]  Francisco Arreguín Sánchez,et al.  Effects of fisheries on the Cantabrian Sea shelf ecosystem , 2004 .

[27]  A. Rossberg,et al.  The top-down mechanism for body-mass-abundance scaling. , 2008, Ecology.

[28]  C. Lortie,et al.  Do biotic interactions shape both sides of the humped-back model of species richness in plant communities? , 2006, Ecology letters.

[29]  M. Doebeli,et al.  The evolution of interspecific mutualisms. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[30]  A. Rossberg,et al.  Food webs: experts consuming families of experts. , 2005, Journal of theoretical biology.

[31]  R. F. Shaw,et al.  Fluctuating silicate:nitrate ratios and coastal plankton food webs. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[32]  G. Woodward,et al.  Body‐size determinants of niche overlap and intraguild predation within a complex food web , 2002 .

[33]  J. Bronstein The exploitation of mutualisms , 2001 .

[34]  M. Sabelis,et al.  Coevolution of Patch Selection Strategies of Predator and Prey and the Consequences for Ecological Stability , 1993, The American Naturalist.

[35]  J. Bronstein,et al.  The evolution of plant-insect mutualisms. , 2006, The New phytologist.

[36]  Terrie M. Williams,et al.  KILLER APPETITES: ASSESSING THE ROLE OF PREDATORS IN ECOLOGICAL COMMUNITIES , 2004 .

[37]  M. Anstett,et al.  Figs and fig pollinators: evolutionary conflicts in a coevoled mutualism. , 1997, Trends in ecology & evolution.

[38]  N. Yamamura,et al.  EFFECTS OF DEFENSE EVOLUTION AND DIET CHOICE ON POPULATION DYNAMICS IN A ONE‐PREDATOR–TWO‐PREY SYSTEM , 2005 .

[39]  D. Read,et al.  The contributions of mycorrhizal fungi to the determination of plant community structure , 1994, Plant and Soil.

[40]  Rebecca E. Irwin,et al.  Direct and ecological costs of resistance to herbivory , 2002 .

[41]  D. Read,et al.  Epiparasitic plants specialized on arbuscular mycorrhizal fungi , 2002, Nature.

[42]  J. E. Cohen,et al.  Cooperation and self-interest: Pareto-inefficiency of Nash equilibria in finite random games. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Peter J. Taylor,et al.  The construction and turnover of complex community models having Generalized Lotka-Volterra dynamics , 1988 .

[44]  I. Saloniemi,et al.  A Coevolutionary Predator-Prey Model with Quantitative Characters , 1993, The American Naturalist.

[45]  A. P. Schaffers,et al.  Parallel Declines in Pollinators and Insect-Pollinated Plants in Britain and the Netherlands , 2006, Science.

[46]  Neo D. Martinez,et al.  Simple rules yield complex food webs , 2000, Nature.

[47]  R. Mauricio Costs of Resistance to Natural Enemies in Field Populations of the Annual Plant Arabidopsis thaliana , 1998, The American Naturalist.

[48]  C. Scrimgeour,et al.  Carbon transfer between plants and its control in networks of arbuscular mycorrhizas , 1998 .

[49]  M. Loreau,et al.  Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[50]  M. Lowman,et al.  Low-Diversity Tropical Rain Forests: Some Possible Mechanisms for Their Existence , 1989, The American Naturalist.

[51]  E. Björkman Monotropa Hypopitys L. — an Epiparasite on Tree Roots , 1960 .

[52]  V. Brown,et al.  Vesicular-Arbuscular Mycorrhizal Fungi: A Determinant of Plant Community Structure in Early Succession , 1993 .

[53]  Jennifer A. Rudgers,et al.  Plant-fungus mutualism affects spider composition in successional fields. , 2006, Ecology letters.

[54]  Alex C Rodriguez,et al.  Soil biota and exotic plant invasion , 2004, Nature.

[55]  R. Denison Legume Sanctions and the Evolution of Symbiotic Cooperation by Rhizobia , 2000, The American Naturalist.

[56]  J. Bever,et al.  Evolution of nitrogen fixation in spatially structured populations of Rhizobium , 2000, Heredity.

[57]  K. McCann,et al.  ANTHROPOGENIC ENRICHMENT ALTERS A MARINE BENTHIC FOOD WEB , 2005 .

[58]  E. Simms,et al.  COOPERATION IN THE RHIZOSPHERE AND THE “FREE RIDER” PROBLEM , 2003 .

[59]  Geoffrey B. West,et al.  Effects of Body Size and Temperature on Population Growth , 2004, The American Naturalist.

[60]  S. Ellner,et al.  Rapid evolution drives ecological dynamics in a predator–prey system , 2003, Nature.

[61]  Patricia A. Livingston,et al.  Ecosystem Change and the Decline of Marine Mammals in the Eastern Bering Sea : Testing the Ecosystem Shift and Commercial Whaling Hypotheses , 1999 .