Rapid outbreak sequencing of Ebola virus in Sierra Leone identifies transmission chains linked to sporadic cases

Abstract To end the largest known outbreak of Ebola virus disease (EVD) in West Africa and to prevent new transmissions, rapid epidemiological tracing of cases and contacts was required. The ability to quickly identify unknown sources and chains of transmission is key to ending the EVD epidemic and of even greater importance in the context of recent reports of Ebola virus (EBOV) persistence in survivors. Phylogenetic analysis of complete EBOV genomes can provide important information on the source of any new infection. A local deep sequencing facility was established at the Mateneh Ebola Treatment Centre in central Sierra Leone. The facility included all wetlab and computational resources to rapidly process EBOV diagnostic samples into full genome sequences. We produced 554 EBOV genomes from EVD cases across Sierra Leone. These genomes provided a detailed description of EBOV evolution and facilitated phylogenetic tracking of new EVD cases. Importantly, we show that linked genomic and epidemiological data can not only support contact tracing but also identify unconventional transmission chains involving body fluids, including semen. Rapid EBOV genome sequencing, when linked to epidemiological information and a comprehensive database of virus sequences across the outbreak, provided a powerful tool for public health epidemic control efforts.

Paul Kellam | Abdul Kamara | Ian Goodfellow | Andrew Rambaut | Stephan Günther | Matthew Cotten | My V. T. Phan | Oliver G. Pybus | Simon Dellicour | Simon J. Watson | Andreas Kurth | Gytis Dudas | Nuno R. Faria | Isaac Boateng | Jia Lu | Martin Gabriel | Nisha Mulakken | John Redd | Armando Arias | Danny Asogun | Umaru Jah | Miles W. Carroll | Dhamari Naidoo | Elisabetta Groppelli | P. Horby | O. Pybus | Guoying Liu | A. Rambaut | S. Günther | P. Kellam | M. Cotten | A. di Caro | N. Faria | Z. Yoti | M. Carroll | R. Wölfel | S. Watson | S. Caddy | A. Arias | Jan Baumann | J. Dunning | J. Redd | I. Goodfellow | R. G. Wadoum | Martin Gabriel | D. Asogun | G. Dudas | S. Gevao | A. Kurth | B. Kargbo | A. Simpson | A. Kamara | T. Brooks | Elisabetta Groppelli | S. Dellicour | Peter Horby | Brima Kargbo | F. Sahr | Antonino Di Caro | Luke Meredith | E. Omomoh | R. Omiunu | P. Akhilomen | J. Oyakhilome | C. Aire | D. Naidoo | Zabulon Yoti | I. Boateng | L. Okoror | Jake Dunning | Roman Wölfel | Pinky Langat | Raoul Emeric Guetiya Wadoum | Ekaete Alice Tobin | Lucy Thorne | Sarah Caddy | Alimamy Tarawalie | Brima Osaio Kamara | Sahr Gevao | Daniel Cooper | Matthew Newport | Foday Sahr | Tim Brooks | Andrew J.H. Simpson | Guoying Liu | Kate Rhodes | James Akpablie | Margaret Lamunu | Esther Vitto | Patrick Otim | Collins Owilli | Lawrence Okoror | Emmanuel Omomoh | Jennifer Oyakhilome | Racheal Omiunu | Ighodalo Yemisis | Donatus Adomeh | Solomon Ehikhiametalor | Patience Akhilomen | Chris Aire | Nicola Cook | Jan Baumann | Lucy G. Thorne | Otim Patrick Cossy Ramadan | Jia Lu | Ekaete Alice Tobin | L. Thorne | L. Meredith | P. Langat | M. Phan | N. Cook | M. Newport | U. Jah | M. Lamunu | Donatus I. Adomeh | D. Cooper | J. Akpablie | Nisha Mulakken | Kate Rhodes | B. O. Kamara | Alimamy Tarawalie | Esther Vitto | Collins Owilli | Ighodalo Yemisis | Solomon Ehikhiametalor | Isaac Boateng | Racheal Omiunu | Patience Akhilomen | Jennifer Oyakhilome | N. Mulakken

[1]  Pardis C Sabeti,et al.  Distinct lineages of Ebola virus in Guinea during the 2014 West African epidemic , 2015, Nature.

[2]  Alexei J Drummond,et al.  Choosing appropriate substitution models for the phylogenetic analysis of protein-coding sequences. , 2006, Molecular biology and evolution.

[3]  H. Kishino,et al.  Dating of the human-ape splitting by a molecular clock of mitochondrial DNA , 2005, Journal of Molecular Evolution.

[4]  O. Faye,et al.  New Evidence of Long-lasting Persistence of Ebola Virus Genetic Material in Semen of Survivors. , 2016, The Journal of infectious diseases.

[5]  Andrew Rambaut,et al.  Real-time digital pathogen surveillance — the time is now , 2015, Genome Biology.

[6]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[7]  Magassouba N’faly,et al.  Ebola Virus in Breast Milk in an Ebola Virus–Positive Mother with Twin Babies, Guinea, 2015 , 2016, Emerging infectious diseases.

[8]  Trevor Bedford,et al.  Ebola Virus Epidemiology, Transmission, and Evolution during Seven Months in Sierra Leone , 2015, Cell.

[9]  Rachel S. G. Sealfon,et al.  Genomic surveillance elucidates Ebola virus origin and transmission during the 2014 outbreak , 2014, Science.

[10]  Abdul Kamara,et al.  Transmission dynamics of Ebola virus disease and intervention effectiveness in Sierra Leone , 2016, Proceedings of the National Academy of Sciences.

[11]  Sergey I. Nikolenko,et al.  SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing , 2012, J. Comput. Biol..

[12]  Jay B. Varkey,et al.  Ebola Virus Persistence in Semen of Male Survivors. , 2016, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[13]  P. Formenty,et al.  Ebola RNA Persistence in Semen of Ebola Virus Disease Survivors — Final Report , 2017, The New England journal of medicine.

[14]  Andrew Rambaut,et al.  Evolution and Spread of Ebola Virus in Liberia, 2014-2015. , 2015, Cell host & microbe.

[15]  Augustine Goba,et al.  Comprehensive panel of real-time TaqMan polymerase chain reaction assays for detection and absolute quantification of filoviruses, arenaviruses, and New World hantaviruses. , 2010, The American journal of tropical medicine and hygiene.

[16]  Jeet Sukumaran,et al.  DendroPy: a Python library for phylogenetic computing , 2010, Bioinform..

[17]  P. Horby,et al.  Recent evolution patterns of Ebola virus inferred from patient samples collected from February-May 2015 with direct deep sequencing in Sierra Leone. , 2015 .

[18]  Andrew Rambaut,et al.  Reduced evolutionary rate in reemerged Ebola virus transmission chains , 2016, Science Advances.

[19]  Christl A. Donnelly,et al.  The role of rapid diagnostics in managing Ebola epidemics , 2015, Nature.

[20]  A. di Caro,et al.  Lactating mothers infected with Ebola virus: EBOV RT-PCR of blood only may be insufficient. , 2015, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[21]  M. Suchard,et al.  Bayesian Phylogenetics with BEAUti and the BEAST 1.7 , 2012, Molecular biology and evolution.

[22]  S. Ho,et al.  Relaxed Phylogenetics and Dating with Confidence , 2006, PLoS biology.

[23]  Jens H Kuhn,et al.  Molecular Evidence of Sexual Transmission of Ebola Virus. , 2015, The New England journal of medicine.

[24]  Sebastian Funk,et al.  Measuring the impact of Ebola control measures in Sierra Leone , 2015, Proceedings of the National Academy of Sciences.

[25]  Anders Larsson,et al.  AliView: a fast and lightweight alignment viewer and editor for large datasets , 2014, Bioinform..

[26]  Mandev S. Gill,et al.  Improving Bayesian population dynamics inference: a coalescent-based model for multiple loci. , 2013, Molecular biology and evolution.

[27]  P. Kellam,et al.  Viral population analysis and minority-variant detection using short read next-generation sequencing , 2013, Philosophical Transactions of the Royal Society B: Biological Sciences.

[28]  Di Liu,et al.  Genetic diversity and evolutionary dynamics of Ebola virus in Sierra Leone , 2015, Nature.