Wireless Subnanosecond RF Synchronization for Distributed Ultrawideband Software-Defined Radar Networks

In this article, we present a distributed and decentralized synchronization algorithm for wireless sensor networks (WSNs). The proposed method achieves subnanosecond synchronization using low-cost commercial-off-the-shelf (COTS) Universal Software Radio Peripheral (USRP) software-defined radios (SDRs) and is implemented entirely in software without the need for custom hardware or atomic clocks. In an <inline-formula> <tex-math notation="LaTeX">$N$ </tex-math></inline-formula> sensor network, the proposed protocol results in each sensor having full knowledge of baseband clock offsets, RF carrier phase offsets, and pairwise RF time of flight to subnanosecond precision for the entire network after <inline-formula> <tex-math notation="LaTeX">$2N$ </tex-math></inline-formula> total transmissions, making this method efficiently extendible to larger sensor networks. The method is decentralized and does not rely on a hierarchical master–slave structure, making it robust to sensor dropout in contested or harsh environments. The proposed methodology is validated in simulation and tested in field experiments using a three-sensor network. This work has a wide range of applications, including transmit (TX) beamforming, distributed sensor localization, and coherent multistatic/multiple-input–multiple-output (MIMO) radar imaging for autonomous sensor swarms.

[1]  P. Schultheiss,et al.  On Time Delay Estimation , 1994, IEEE Seventh SP Workshop on Statistical Signal and Array Processing.

[2]  Mahta Moghaddam,et al.  Ultra-wideband synthesis for high-range resolution software defined radar , 2018, 2018 IEEE Radar Conference (RadarConf18).

[3]  Songcheol Hong,et al.  Wireless Cooperative Synchronization of Coherent UWB MIMO Radar , 2014, IEEE Transactions on Microwave Theory and Techniques.

[4]  Y. Jay Guo,et al.  Anchor-free localisation algorithm and performance analysis in wireless sensor networks , 2009, IET Commun..

[5]  Gerhard Krieger,et al.  Performance prediction of a phase synchronization link for bistatic SAR , 2006, IEEE Geoscience and Remote Sensing Letters.

[6]  Hongwei Guo,et al.  A Simple Algorithm for Fitting a Gaussian Function [DSP Tips and Tricks] , 2011, IEEE Signal Processing Magazine.

[7]  G. Krieger,et al.  Spaceborne bi- and multistatic SAR: potential and challenges , 2006 .

[8]  T. Hughes,et al.  Signals and systems , 2006, Genome Biology.

[9]  M. Vossiek,et al.  Method for High Precision Clock Synchronization in Wireless Systems with Application to Radio Navigation , 2007, 2007 IEEE Radio and Wireless Symposium.

[10]  Chibiao Ding,et al.  Time and phase synchronisation via direct-path signal for bistatic synthetic aperture radar systems , 2008 .

[11]  A. Einstein Zur Elektrodynamik bewegter Körper , 1905 .

[12]  David Hawkins,et al.  Ultrawideband Synthesis for High-Range-Resolution Software-Defined Radar , 2020, IEEE Transactions on Instrumentation and Measurement.

[13]  Jing Liang,et al.  Design and Analysis of Distributed Radar Sensor Networks , 2011, IEEE Transactions on Parallel and Distributed Systems.

[14]  Andreas F. Molisch,et al.  Experimental demonstration of nanosecond-accuracy wireless network synchronization , 2015, 2015 IEEE International Conference on Communications (ICC).

[15]  Johannes Schwendner,et al.  An Approach to Over-the-air Synchronization of Commercial Chirp-Sequence Automotive Radar Sensors , 2020, 2020 IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNeT).

[16]  Saurabh Ganeriwal,et al.  Timing-sync protocol for sensor networks , 2003, SenSys '03.

[17]  David L. Mills,et al.  Computer network time synchronization : the network time protocol on earth and in space , 2006 .

[18]  Lars C. Wolf,et al.  Accurate and Precise Distance Estimation from Phase-Based Ranging Data , 2018, 2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN).

[19]  Danijela Cabric,et al.  Software Defined Radio Implementation of Carrier and Timing Synchronization for Distributed Arrays , 2019, 2019 IEEE Aerospace Conference.

[20]  Junlin Yan,et al.  Review of range-based positioning algorithms , 2013, IEEE Aerospace and Electronic Systems Magazine.

[21]  Jean-Benoît Pierrot,et al.  Joint distributed synchronization and positioning in UWB ad hoc networks using TOA , 2006, IEEE Transactions on Microwave Theory and Techniques.

[22]  Deborah Estrin,et al.  Proceedings of the 5th Symposium on Operating Systems Design and Implementation Fine-grained Network Time Synchronization Using Reference Broadcasts , 2022 .

[23]  Kegen Yu,et al.  TOA-based distributed localisation with unknown internal delays and clock frequency offsets in wireless sensor networks , 2009 .

[24]  Andrew G. Klein,et al.  A software-defined radio implementation of timestamp-free network synchronization , 2017, 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[25]  Hervé Barreau,et al.  La mesure du temps , 2009 .

[26]  D. Kirchner,et al.  Two-way time transfer via communication satellites , 1991, Proc. IEEE.

[27]  Wen-Qin Wang,et al.  Integrated Wireless Sensor Systems via Near-Space and Satellite Platforms: A Review , 2014, IEEE Sensors Journal.

[28]  Kristofer S. J. Pister,et al.  Burst Mode Two-Way Ranging with Cramer-Rao Bound Noise Performance , 2008, IEEE GLOBECOM 2008 - 2008 IEEE Global Telecommunications Conference.

[29]  Saul I. Shupack,et al.  Fast algorithm for the resolution of spectra , 1986 .

[30]  Petre Stoica,et al.  Scalable and Passive Wireless Network Clock Synchronization in LOS Environments , 2017, IEEE Transactions on Wireless Communications.

[31]  Reinhard Exel,et al.  Receiver Design for Time-Based Ranging with IEEE 802.11b Signals , 2012 .

[32]  Upamanyu Madhow,et al.  On Localization Performance in Imaging Sensor Nets , 2007, IEEE Transactions on Signal Processing.

[33]  Gyula Simon,et al.  The flooding time synchronization protocol , 2004, SenSys '04.

[34]  Y. Jay Guo,et al.  Peak and leading edge detection for time-of-arrival estimation in band-limited positioning systems , 2009, IET Commun..

[35]  Gaetano Scarano,et al.  Discrete time techniques for time delay estimation , 1993, IEEE Trans. Signal Process..

[36]  Rick S. Blum,et al.  Phase Synchronization for Coherent MIMO Radar: Algorithms and Their Analysis , 2011, IEEE Transactions on Signal Processing.

[37]  Javier Serrano,et al.  Precise time and frequency transfer in a White Rabbit network , 2011 .

[38]  John C. Eidson,et al.  Measurement, Control, and Communication Using IEEE 1588 (Advances in Industrial Control) , 2006 .

[39]  A. Weiss,et al.  Fundamental limitations in passive time delay estimation--Part I: Narrow-band systems , 1983 .

[40]  Hongwei Guo,et al.  A Simple Algorithm for Fitting a Gaussian Function , 2012 .

[41]  Bruce W. Suter,et al.  Novel Clock Phase Offset and Skew Estimation Using Two-Way Timing Message Exchanges for Wireless Sensor Networks , 2007, IEEE Transactions on Communications.

[42]  Alfred O. Hero,et al.  Relative location estimation in wireless sensor networks , 2003, IEEE Trans. Signal Process..

[43]  Anthony Rowe,et al.  Pulsar: A Wireless Propagation-Aware Clock Synchronization Platform , 2017, 2017 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS).

[44]  Cesim Erten,et al.  Fully Decentralized and Collaborative Multilateration Primitives for Uniquely Localizing WSNs , 2010, EURASIP J. Wirel. Commun. Netw..

[45]  Mahta Moghaddam,et al.  Application of Ultra-Wideband Synthesis in Software Defined Radar for UAV-based Landmine Detection , 2019, IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium.

[46]  Rudy Moddemeijer On the determination of the position of extrema of sampled correlators , 1991, IEEE Trans. Signal Process..