Gross segmentation of mammograms using a polynomial model
暂无分享,去创建一个
The breast and background on a mammogram form complementary, connected sets. Generally, the intensities comprising the background are spatially continuous, low in value and lie within a closed interval. The background may therefore be approximated by a polynomial in x and y on the basis of the Weierstrass approximation theorem. The authors include the whole background and a small portion of the breast in the region being modelled. The modelled background is subtracted from the original image, the resulting image thresholded, and the largest low intensity region taken to be the background. Connected regions are identified, labelled and merged. The background is floodfilled, and inclusions removed from the object, to yield a breast-background binary image. The method has been tested on 58 mammograms of two views from two digital mammogram databases. With one exception, it performs well and yields a skin-air interface with sufficient fidelity to preserve a nipple in profile.
[1] A. Rosenfeld,et al. Image segmentation and image models , 1979, Proceedings of the IEEE.
[2] K Doi,et al. Computerized detection of masses in digital mammograms: automated alignment of breast images and its effect on bilateral-subtraction technique. , 1994, Medical physics.
[3] Donald L. Kreider,et al. An introduction to linear analysis , 1966 .
[4] L. Clarke,et al. Image segmentation in digital mammography: comparison of local thresholding and region growing algorithms. , 1992, Computerized Medical Imaging and Graphics.