Grey Wolf Optimizer — Source link

: This work proposes a new meta-heuristic called Grey Wolf Optimizer (GWO) inspired by grey wolves (Canis lupus). The GWO algorithm mimics the leadership hierarchy and hunting mechanism of grey wolves in nature. Four types of grey wolves such as alpha, beta, delta, and omega are employed for simulating the leadership hierarchy. In addition, the three main steps of hunting, searching for prey, encircling prey, and attacking prey, are implemented. The algorithm is then benchmarked on 29 well-known test functions, and the results are verified by a comparative study with Particle Swarm Optimization (PSO), Gravitational Search Algorithm (GSA), Differential Evolution (DE), Evolutionary Programming (EP), and Evolution Strategy (ES). The results show that the GWO algorithm is able to provide very competitive results compared to these well-known meta-heuristics. The paper also considers solving three classical engineering design problems (tension/compression spring, welded beam, and pressure vessel designs) and presents a real application of the proposed method in the field of optical engineering. The results of the classical engineering design problems and real application prove that the proposed algorithm is applicable to challenging problems with unknown search spaces.

[1]  Andrew Lewis,et al.  A tri-objective Particle Swarm Optimizer for designing line defect Photonic Crystal Waveguides , 2014 .

[2]  Andrew Lewis,et al.  A Novel Multi-Objective Optimization Framework for Designing Photonic Crystal Waveguides , 2014, IEEE Photonics Technology Letters.

[3]  Seyed Mohammad Mirjalili,et al.  Optical buffer performance enhancement using Particle Swarm Optimization in Ring-Shape-Hole Photonic Crystal Waveguide , 2013 .

[4]  Alireza Rezazadeh,et al.  A new heuristic optimization algorithm for modeling of proton exchange membrane fuel cell: bird mating optimizer , 2013 .

[5]  Andrew Lewis,et al.  S-shaped versus V-shaped transfer functions for binary Particle Swarm Optimization , 2013, Swarm Evol. Comput..

[6]  Abdolreza Hatamlou,et al.  Black hole: A new heuristic optimization approach for data clustering , 2013, Inf. Sci..

[7]  A. Kaveh,et al.  A new meta-heuristic method: Ray Optimization , 2012 .

[8]  Amir Hossein Alavi,et al.  Krill herd: A new bio-inspired optimization algorithm , 2012 .

[9]  K. Abedi,et al.  Light property and optical buffer performance enhancement using Particle Swarm Optimization in Oblique Ring-Shape-Hole Photonic Crystal Waveguide , 2012, 2012 Photonics Global Conference (PGC).

[10]  Mohamed Cheriet,et al.  Curved Space Optimization: A Random Search based on General Relativity Theory , 2012, ArXiv.

[11]  Siti Zaiton Mohd Hashim,et al.  Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm , 2012, Appl. Math. Comput..

[12]  Wen-Tsao Pan,et al.  A new Fruit Fly Optimization Algorithm: Taking the financial distress model as an example , 2012, Knowl. Based Syst..

[13]  Jie Zhang,et al.  Slow light engineering in polyatomic photonic crystal waveguides based on square lattice , 2011 .

[14]  R. Coppinger,et al.  Wolf-pack (Canis lupus) hunting strategies emerge from simple rules in computational simulations , 2011, Behavioural Processes.

[15]  Bilal Alatas,et al.  ACROA: Artificial Chemical Reaction Optimization Algorithm for global optimization , 2011, Expert Syst. Appl..

[16]  Yuefeng Ji,et al.  Slow Light Property Improvement and Optical Buffer Capability in Ring-Shape-Hole Photonic Crystal Waveguide , 2011, Journal of Lightwave Technology.

[17]  Hamed Shah-Hosseini,et al.  Principal components analysis by the galaxy-based search algorithm: a novel metaheuristic for continuous optimisation , 2011, Int. J. Comput. Sci. Eng..

[18]  X. Le Roux,et al.  Dispersion Engineering of Wide Slot Photonic Crystal Waveguides by Bragg-Like Corrugation of the Slot , 2011, IEEE Photonics Technology Letters.

[19]  S. Mirjalili,et al.  A new hybrid PSOGSA algorithm for function optimization , 2010, 2010 International Conference on Computer and Information Application.

[20]  Xin-She Yang Test Problems in Optimization , 2010, 1008.0549.

[21]  Chao Peng,et al.  Wideband and low dispersion slow light in slotted photonic crystal waveguide , 2010 .

[22]  Xin-She Yang,et al.  A New Metaheuristic Bat-Inspired Algorithm , 2010, NICSO.

[23]  Xin-She Yang,et al.  Firefly algorithm, stochastic test functions and design optimisation , 2010, Int. J. Bio Inspired Comput..

[24]  A. Kaveh,et al.  A novel heuristic optimization method: charged system search , 2010 .

[25]  Siamak Talatahari,et al.  An improved ant colony optimization for constrained engineering design problems , 2010 .

[26]  Manuel López-Ibáñez,et al.  Ant colony optimization , 2010, GECCO '10.

[27]  Xin-She Yang,et al.  Cuckoo Search via Lévy flights , 2009, 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC).

[28]  Hossein Nezamabadi-pour,et al.  GSA: A Gravitational Search Algorithm , 2009, Inf. Sci..

[29]  Jiang Jianjun,et al.  A Dolphin Partner Optimization , 2009, 2009 WRI Global Congress on Intelligent Systems.

[30]  Mitsuo Gen,et al.  Auto-tuning strategy for evolutionary algorithms: balancing between exploration and exploitation , 2008, Soft Comput..

[31]  Dan Simon,et al.  Biogeography-Based Optimization , 2022 .

[32]  Yongquan Zhou,et al.  A Novel Global Convergence Algorithm: Bee Collecting Pollen Algorithm , 2008, ICIC.

[33]  Toshihiko Baba,et al.  Slow light in photonic crystals , 2008 .

[34]  Carlos A. Coello Coello,et al.  An empirical study about the usefulness of evolution strategies to solve constrained optimization problems , 2008, Int. J. Gen. Syst..

[35]  Andries Petrus Engelbrecht,et al.  Measuring exploration/exploitation in particle swarms using swarm diversity , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[36]  Xin-She Yang,et al.  Nature-Inspired Metaheuristic Algorithms , 2008 .

[37]  A. Mucherino,et al.  Monkey search: a novel metaheuristic search for global optimization , 2007 .

[38]  M. Fesanghary,et al.  An improved harmony search algorithm for solving optimization problems , 2007, Appl. Math. Comput..

[39]  Thomas A. Runkler,et al.  Wasp Swarm Algorithm for Dynamic MAX-SAT Problems , 2007, ICANNGA.

[40]  Ling Wang,et al.  An effective co-evolutionary differential evolution for constrained optimization , 2007, Appl. Math. Comput..

[41]  Ling Wang,et al.  An effective co-evolutionary particle swarm optimization for constrained engineering design problems , 2007, Eng. Appl. Artif. Intell..

[42]  Richard A. Formato,et al.  CENTRAL FORCE OPTIMIZATION: A NEW META-HEURISTIC WITH APPLICATIONS IN APPLIED ELECTROMAGNETICS , 2007 .

[43]  Xiaodong Wu,et al.  Small-World Optimization Algorithm for Function Optimization , 2006, ICNC.

[44]  Andries Petrus Engelbrecht,et al.  A study of particle swarm optimization particle trajectories , 2006, Inf. Sci..

[45]  Ibrahim Eksin,et al.  A new optimization method: Big Bang-Big Crunch , 2006, Adv. Eng. Softw..

[46]  B. Basturk An artificial bee colony (ABC) algorithm for numeric function optimization , 2006 .

[47]  K. Lee,et al.  A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice , 2005 .

[48]  Jing J. Liang,et al.  Novel composition test functions for numerical global optimization , 2005, Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005..

[49]  Enrique Alba,et al.  The exploration/exploitation tradeoff in dynamic cellular genetic algorithms , 2005, IEEE Transactions on Evolutionary Computation.

[50]  Stephen B. Wicker,et al.  Termite: a swarm intelligent routing algorithm for mobile wireless ad-hoc networks , 2005 .

[51]  Jing J. Liang,et al.  Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization , 2005 .

[52]  Barry Webster,et al.  A Local Search Optimization Algorithm Based on Natural Principles of Gravitation , 2003, IKE.

[53]  Petros Koumoutsakos,et al.  Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES) , 2003, Evolutionary Computation.

[54]  Carlos A. Coello Coello,et al.  Constraint-handling in genetic algorithms through the use of dominance-based tournament selection , 2002, Adv. Eng. Informatics.

[55]  Barbara Webb,et al.  Swarm Intelligence: From Natural to Artificial Systems , 2002, Connect. Sci..

[56]  Hussein A. Abbass,et al.  MBO: marriage in honey bees optimization-a Haplometrosis polygynous swarming approach , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[57]  Konstantinos G. Margaritis,et al.  On benchmarking functions for genetic algorithms , 2001, Int. J. Comput. Math..

[58]  C. Coello,et al.  CONSTRAINT-HANDLING USING AN EVOLUTIONARY MULTIOBJECTIVE OPTIMIZATION TECHNIQUE , 2000 .

[59]  K. Deb An Efficient Constraint Handling Method for Genetic Algorithms , 2000 .

[60]  Carlos A. Coello Coello,et al.  Use of a self-adaptive penalty approach for engineering optimization problems , 2000 .

[61]  L. Mech Alpha Status, Dominance, and Division of Labor in Wolf Packs , 1999 .

[62]  Xin Yao,et al.  Evolutionary programming made faster , 1999, IEEE Trans. Evol. Comput..

[63]  Vidroha Debroy,et al.  Genetic Programming , 1998, Lecture Notes in Computer Science.

[64]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[65]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[66]  Kalyanmoy Deb,et al.  GeneAS: A Robust Optimal Design Technique for Mechanical Component Design , 1997 .

[67]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[68]  Dan Boneh,et al.  On genetic algorithms , 1995, COLT '95.

[69]  Christian Roux,et al.  Registration of Non-Segmented Images Using a Genetic Algorithm , 1995, CVRMed.

[70]  S. N. Kramer,et al.  An Augmented Lagrange Multiplier Based Method for Mixed Integer Discrete Continuous Optimization and Its Applications to Mechanical Design , 1994 .

[71]  Jing Wang,et al.  Swarm Intelligence in Cellular Robotic Systems , 1993 .

[72]  Kalyanmoy Deb,et al.  Optimal design of a welded beam via genetic algorithms , 1991 .

[73]  W. Pinebrook The evolution of strategy. , 1990, Case studies in health administration.

[74]  E. Sandgren,et al.  Nonlinear Integer and Discrete Programming in Mechanical Design Optimization , 1990 .

[75]  Jasbir S. Arora,et al.  Introduction to Optimum Design , 1988 .

[76]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[77]  Ashok Dhondu Belegundu,et al.  A Study of Mathematical Programming Methods for Structural Optimization , 1985 .

[78]  K. M. Ragsdell,et al.  Optimal Design of a Class of Welded Structures Using Geometric Programming , 1976 .

[79]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .