Modeling the iron oxides and oxyhydroxides for the prediction of environmentally sensitive phase transformations

structures may contain partially occupied sites or long-range ordering of vacancies, and some loose structures require proper description of weak interactions such as hydrogen bonding and dispersive forces. If structures and transformations are to be reliably predicted under different chemical conditions, each of these challenges must be overcome simultaneously while preserving a high level of numerical accuracy and physical sophistication. Here we present comparative studies of structure, magnetization, and elasticity properties of iron oxides and oxyhydroxides using density-functional-theory calculations with plane-wave (PW) and locally-confined-atomicorbital basis sets, which are implemented in VASP and SIESTA packages, respectively. We have selected hematite (α-Fe2O3), maghemite (γ-Fe2O3), goethite (α-FeOOH), lepidocrocite (γ-FeOOH), and magnetite (Fe3O4 )a s model systems from a total of 13 known iron oxides and oxyhydroxides, and we used the same convergence criteria and almost equivalent settings to make consistent comparisons. Our results show that both basis sets can reproduce the energetic stability and magnetic ordering, and are in agreement with experimental observations. There are advantages to choosing one basis set over the other, depending on the intended focus. In our case, we find the method using PW basis set the most appropriate, and we combine our results to construct the first phase diagram of iron oxides and oxyhydroxides in the space of competing chemical potentials, generated entirely from first principles.

[1]  Jones,et al.  Total-energy differences: Sources of error in local-density approximations. , 1985, Physical review. B, Condensed matter.

[2]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[3]  J. Perdew,et al.  Assessing the performance of recent density functionals for bulk solids , 2009, 0903.4037.

[4]  In situ study of the goethite-hematite phase transformation by real time synchrotron powder diffraction , 1999 .

[5]  Zhang,et al.  Electron states, magnetism, and the Verwey transition in magnetite. , 1991, Physical review. B, Condensed matter.

[6]  J. Rayne,et al.  Elastic Constants of Iron from 4.2 to 300°K , 1961 .

[7]  D. Sparks,et al.  Periodic density functional theory calculations of bulk and the (010) surface of goethite , 2008, Geochemical transactions.

[8]  Spence,et al.  Charge ordering in magnetite at low temperatures. , 1990, Physical review. B, Condensed matter.

[9]  H. Ledbetter,et al.  Elastic constants of monocrystal iron from 3 to 500 K , 2006 .

[10]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[11]  G. Scuseria,et al.  Assessment of a long-range corrected hybrid functional. , 2006, The Journal of chemical physics.

[12]  Benjamin G. Janesko,et al.  Range separation and local hybridization in density functional theory. , 2008, The journal of physical chemistry. A.

[13]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[14]  Richard L. Martin,et al.  Spin-orbit splittings and energy band gaps calculated with the Heyd-Scuseria-Ernzerhof screened hybrid functional , 2006 .

[15]  G. Burns,et al.  Infrared- and Raman-active phonons of magnetite, maghemite, and hematite: a computer simulation and spectroscopic study. , 2005, The journal of physical chemistry. B.

[16]  J. Gale,et al.  The influence of pressure on the structure and dynamics of hydrogen bonds in zoisite and clinozoisite , 2008 .

[17]  C. Grey,et al.  Density Functional Theory Study of Ferrihydrite and Related Fe-Oxyhydroxides , 2009 .

[18]  J. Hafner,et al.  Ab initio study of the (0001) surfaces of hematite and chromia: Influence of strong electronic correlations , 2004 .

[19]  V. Anisimov,et al.  Band theory and Mott insulators: Hubbard U instead of Stoner I. , 1991, Physical review. B, Condensed matter.

[20]  Solange B. Fagan,et al.  Electronic and magnetic properties of iron chains on carbon nanotubes , 2003, Microelectron. J..

[21]  T. Koetzle,et al.  Structure of magnetite (Fe3O4) below the Verwey transition temperature , 1982 .

[22]  G. Scuseria,et al.  Prescription for the design and selection of density functional approximations: more constraint satisfaction with fewer fits. , 2005, The Journal of chemical physics.

[23]  F. Ewing The Crystal Structure of Lepidocrocite , 1935 .

[24]  R. Jeanloz,et al.  Pressure-temperature stability studies of FeOOH using X-ray diffraction , 2008 .

[25]  J. Restrepo,et al.  Magnetic properties of magnetite above the Verwey transition: a Monte Carlo simulation , 2005 .

[26]  E. Verwey,et al.  Electronic Conduction of Magnetite (Fe3O4) and its Transition Point at Low Temperatures , 1939, Nature.

[27]  I. Hamada,et al.  Structure and magnetism of anion iron oxide clusters, FenOm-(n=3,4) , 2005 .

[28]  G. Scuseria,et al.  Lattice defects and magnetic ordering in plutonium oxides: a hybrid density-functional-theory study of strongly correlated materials. , 2005, The Journal of chemical physics.

[29]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[30]  N. Vast,et al.  Effects of localization of the semicore density on the physical properties of transition and noble metals , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[31]  Richard L. Martin,et al.  Hybrid density-functional theory and the insulating gap of UO2. , 2002, Physical review letters.

[32]  R. Frankel,et al.  Crystal-size and shape distributions of magnetite from uncultured magnetotactic bacteria as a potential biomarker , 2005 .

[33]  A. Navrotsky,et al.  Size-Driven Structural and Thermodynamic Complexity in Iron Oxides , 2008, Science.

[34]  Andrew G. Glen,et al.  APPL , 2001 .

[35]  S. J. Cyvin,et al.  Hydrogen Bonds of gamma-FeOOH. , 1978 .

[36]  C. Greaves A powder neutron diffraction investigation of vacancy ordering and covalence in γ-Fe2O3 , 1983 .

[37]  I. Sajó,et al.  Vacancy ordering in nanosized maghemite from neutron and X-ray powder diffraction , 2002 .

[38]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[39]  K. Rosso,et al.  Structures and energies of AlOOH and FeOOH polymorphs from plane wave pseudopotential calculations , 2001 .

[40]  Electron correlation effects and ferromagnetism in iron , 2001, cond-mat/0112038.

[41]  A R Plummer,et al.  Introduction to Solid State Physics , 1967 .

[42]  Exchange parameters in Fe-based molecular magnets , 2004, cond-mat/0409302.

[43]  A. Oleś,et al.  Neutron Diffraction Study of γ‐FeOOH , 1970 .

[44]  W. Marsden I and J , 2012 .

[45]  J. Nye Physical Properties of Crystals: Their Representation by Tensors and Matrices , 1957 .

[46]  Andreas Savin,et al.  Hybrid functionals with local range separation. , 2008, The Journal of chemical physics.

[47]  R. Zare,et al.  Search for Past Life on Mars: Possible Relic Biogenic Activity in Martian Meteorite ALH84001 , 1996, Science.

[48]  A. Becke A New Mixing of Hartree-Fock and Local Density-Functional Theories , 1993 .

[49]  M. Mizoguchi NMR Study of the Low Temperature Phase of Fe 3 O 4 . I. Experiments , 1978 .

[50]  B. Johansson,et al.  Single-crystal elastic constants of ferromagnetic bcc Fe-based random alloys from first-principles theory , 2010 .

[51]  J. Cullen,et al.  COLLECTIVE ELECTRON THEORY OF THE VERWEY TRANSITION IN MAGNETITE , 1971 .

[52]  Donald G Truhlar,et al.  Tests of the RPBE, revPBE, tau-HCTHhyb, omegaB97X-D, and MOHLYP density functional approximations and 29 others against representative databases for diverse bond energies and barrier heights in catalysis. , 2010, The Journal of chemical physics.

[53]  H. Kagi,et al.  Variation of hydrogen bonded O···O distances in goethite at high pressure , 2003 .

[54]  D. Sánchez-Portal,et al.  The SIESTA method for ab initio order-N materials simulation , 2001, cond-mat/0111138.

[55]  S. Russo,et al.  Hybrid density functional theory study of the high-pressure polymorphs of α -Fe2 O3 hematite , 2009 .

[56]  Stefano de Gironcoli,et al.  Linear response approach to the calculation of the effective interaction parameters in the LDA + U method , 2004, cond-mat/0405160.

[57]  G. Scuseria,et al.  Description of magnetic interactions in strongly correlated solids via range-separated hybrid functionals , 2009 .

[58]  C. M. Newman,et al.  First principles simulations of the magnetic and structural properties of Iron , 2004 .

[59]  M. Payne,et al.  Density functional theory study of Fe(II) adsorption and oxidation on goethite surfaces , 2009, 0904.2111.

[60]  O. Gunnarsson,et al.  Transition-metal oxides in the self-interaction-corrected density-functional formalism. , 1990, Physical review letters.

[61]  S. Snyder,et al.  Proceedings of the National Academy of Sciences , 1999 .

[62]  S. Öberg,et al.  A pseudopotential density functional theory study of native defects and boron impurities in FeAl , 2006 .

[63]  D. Sánchez-Portal,et al.  Numerical atomic orbitals for linear-scaling calculations , 2001, cond-mat/0104170.

[64]  Edward N Brothers,et al.  Accurate solid-state band gaps via screened hybrid electronic structure calculations. , 2008, The Journal of chemical physics.

[65]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[66]  F. Birch Finite Elastic Strain of Cubic Crystals , 1947 .

[67]  Richard L. Martin,et al.  Effect of Fock exchange on the electronic structure and magnetic coupling in NiO , 2002 .

[68]  G. Madsen,et al.  Charge order in magnetite. An LDA+U study , 2004, cond-mat/0412560.

[69]  Damien Faivre,et al.  An integrated approach for determining the origin of magnetite nanoparticles , 2006 .

[70]  Y. Qi,et al.  Environmental conditions to achieve low adhesion and low friction on diamond surfaces , 2010 .

[71]  A. Steele,et al.  Life on Mars: evaluation of the evidence within Martian meteorites ALH84001, Nakhla, and Shergotty , 2001 .

[72]  Emilio Artacho,et al.  The SIESTA method; developments and applicability , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[73]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[74]  M. F. Mckay,et al.  Truncated hexa-octahedral magnetite crystals in ALH84001: Presumptive biosignatures , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[75]  Emilio Artacho,et al.  LINEAR-SCALING AB-INITIO CALCULATIONS FOR LARGE AND COMPLEX SYSTEMS , 1999 .

[76]  M. H. Braga,et al.  CALPHAD : Computer Coupling of Phase Diagrams and Thermochemistry , 2009 .

[77]  P A Midgley,et al.  Magnetite morphology and life on Mars , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[78]  Gustavo E Scuseria,et al.  Theoretical study of CeO2 and Ce2O3 using a screened hybrid density functional. , 2006, The Journal of chemical physics.

[79]  Mizoguchi Moriji NMR Study of the Low Temperature Phase of Fe3O4. II. Electron Ordering Analysis , 1978 .

[80]  Ricardo Grau-Crespo,et al.  Vacancy ordering and electronic structure of γ-Fe2O3 (maghemite): a theoretical investigation , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[81]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[82]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[83]  J. Kirschvink,et al.  Elongated prismatic magnetite crystals in ALH84001 carbonate globules: potential Martian magnetofossils. , 2000, Geochimica et cosmochimica acta.

[84]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[85]  C. Mazzoli,et al.  Critical Reexamination of Resonant Soft X-Ray Bragg Forbidden Reflections in Magnetite , 2008, 0811.3350.

[86]  First-principles calculations of the isosteric Bain path of cobalt , 2005 .

[87]  Joshua R. Smith,et al.  Thermodynamics fromab initiocomputations , 2004 .

[88]  O. Gunnarsson,et al.  Density-functional calculation of effective Coulomb interactions in metals. , 1991, Physical review. B, Condensed matter.

[89]  M. Scheffler,et al.  A combined DFT/LEED-approach for complex oxide surface structure determination: Fe3O4(0 0 1) , 2008 .

[90]  Y. Miyamoto,et al.  Magnetoelectric Measurement of Magnetite (Fe3O4) at Low Temperatures and Direct Evidence for Nonexistence of ac Mirror Plane , 1993 .

[91]  C. I. Sainz-Díaz,et al.  Crystal structure and hydroxyl group vibrational frequencies of phyllosilicates by DFT methods , 2009 .

[92]  Leung,et al.  Ground-state properties of Fe, Co, Ni, and their monoxides: Results of the generalized gradient approximation. , 1991, Physical review. B, Condensed matter.

[93]  J. Yoshida,et al.  X-Ray Diffraction Study on the Low Temperature Phase of Magnetite , 1977 .

[94]  K. Kokko,et al.  within the LSDA + U approach , 1999 .

[95]  J. Attfield,et al.  Charge ordered structure of magnetite Fe 3 O 4 below the Verwey transition , 2002 .

[96]  Gustavo E Scuseria,et al.  Efficient hybrid density functional calculations in solids: assessment of the Heyd-Scuseria-Ernzerhof screened Coulomb hybrid functional. , 2004, The Journal of chemical physics.

[97]  Y. Kong,et al.  Elastic and thermodynamic properties of the Ni–B system studied by first-principles calculations and experimental measurements , 2010 .

[98]  E. Artacho,et al.  Comparison between plane-wave and linear-scaling localized basis sets for structural calculations of microporous molecular sieves , 2003 .

[99]  F. Morin Magnetic Susceptibility of αFe 2 O 3 and αFe 2 O 3 with Added Titanium , 1950 .

[100]  F. Walz,et al.  The Verwey transition - a topical review , 2002 .

[101]  A. Navrotsky,et al.  Thermodynamics of Fe oxides: Part II. Enthalpies of formation and relative stability of goethite (α-FeOOH), lepidocrocite (γ-FeOOH), and maghemite (γ-Fe2O3) , 2003 .

[102]  J. Kohout,et al.  NMR in Magnetite below and around the Verwey transition , 2000 .

[103]  Jürgen Hafner,et al.  First-principles calculation of the structure and magnetic phases of hematite , 2004 .

[104]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[105]  K. Burke,et al.  Rationale for mixing exact exchange with density functional approximations , 1996 .

[106]  D. Vaughan,et al.  Bulk and key surface structures of hematite, magnetite, and goethite: A density functional theory study , 2009 .

[107]  H. V. Lauer,et al.  Evidence for exclusively inorganic formation of magnetite in Martian meteorite ALH84001 , 2004 .

[108]  Javier Junquera,et al.  Systematic ab initio study of the electronic and magnetic properties of different pure and mixed iron systems , 2000 .