Braided Hochschild cohomology and Hopf actions

We show that the braided Hochschild cohomology, of an algebra in a suitably algebraic braided monoidal category, admits a graded ring structure under which it is braided commutative. We then give a canonical identification between the usual Hochschild cohomology ring of a smash product and the (derived) invariants of its braided Hochschild cohomology ring. We apply our results to identify the associative formal deformation theory of a smash product with its formal deformation theory as a module algebra over the given Hopf algebra (when the Hopf algebra is sufficiently semisimple). As a second application we deduce some structural results for the usual Hochschild cohomology of a smash product, and discuss specific implications for finite group actions on smooth affine schemes.

[1]  S. Montgomery Algebra Properties invariant under Twisting , 2019, Hopf Algebras in Noncommutative Geometry and Physics.

[2]  Márton Hablicsek,et al.  Formality of derived intersections and the orbifold HKR isomorphism , 2014, Journal of Algebra.

[3]  C. Negron Alternate Approaches to the Cup Product and Gerstenhaber Bracket on Hochschild Cohomology , 2015 .

[4]  J. Brodzki,et al.  The periodic cyclic homology of crossed products of finite type algebras , 2015, 1509.03662.

[5]  Christopher L. Rogers,et al.  A version of the Goldman–Millson theorem for filtered L∞-algebras , 2015 .

[6]  C. Negron Spectral Sequences for the Cohomology Rings of a Smash Product , 2014, 1401.3551.

[7]  Daniel Lowengrub,et al.  Deformation in Theory , 2014 .

[8]  C. Negron The cup product on Hochschild cohomology via twisting cochains and applications to Koszul rings , 2013, 1304.0527.

[9]  A. V. Shepler,et al.  Group actions on algebras and the graded Lie structure of Hochschild cohomology , 2009, 0911.0938.

[10]  A. V. Shepler,et al.  Finite groups acting linearly: Hochschild cohomology and the cup product , 2009, 0911.0920.

[11]  S. Witherspoon,et al.  Cohomology of finite‐dimensional pointed Hopf algebras , 2009, 0902.0801.

[12]  Donald Yau,et al.  The L ∞ -deformation complex of diagrams of algebras , 2009 .

[13]  Donald Yau Deformation bicomplex of module-algebras , 2007, 0707.3640.

[14]  Xiang Tang,et al.  Orbifold cup products and ring structures on Hochschild cohomologies , 2007, 0706.0027.

[15]  Xiang Tang,et al.  Noncommutative Poisson structures on orbifolds , 2006, math/0606436.

[16]  A. Kaygun Hopf-Hochschild (co)homology of module algebras , 2006, math/0606340.

[17]  M. Manetti Deformation theory via differential graded Lie algebras , 2005, math/0507284.

[18]  V. Ginzburg Lectures on Noncommutative Geometry , 2005, math/0506603.

[19]  Xiang Tang,et al.  Homology of formal deformations of proper étale Lie groupoids , 2004, math/0412462.

[20]  P. Etingof,et al.  Hochschild cohomology of quantized symplectic orbifolds and the Chen-Ruan cohomology , 2004, math/0410562.

[21]  S. Witherspoon,et al.  Algebraic deformations arising from orbifolds with discrete torsion , 2002, math/0210027.

[22]  V. Baranovsky Orbifold Cohomology as Periodic Cyclic Homology , 2002, math/0206256.

[23]  J. Guccione,et al.  Hochschild (co)homology of Hopf crossed products , 2001, math/0104075.

[24]  A. Guichardet Suites spectrales à la Hochschild–Serre pour les produits croisés d'algèbres et de groupes☆ , 2001 .

[25]  D. Ştefan Hochschild cohomology on Hopf Galois extensions , 1995 .

[26]  J. Baez Hochschild homology in a braided tensor category , 1994 .

[27]  J. Stasheff The intrinsic bracket on the deformation complex of an associative algebra , 1993 .

[28]  Susan Montgomery,et al.  Hopf algebras and their actions on rings , 1993 .

[29]  M. Gerstenhaber,et al.  Relative Hochschild cohomology, rigid algebras, and the Bockstein , 1986 .

[30]  Murray Gerstenhaber,et al.  The Cohomology Structure of an Associative Ring , 1963 .