A tree-based method to price American options in the Heston model

We develop an algorithm to price American options on assets that follow the stochastic volatility model defined by Heston. We use an approach which is based on a modification of a combined tree for stock prices and volatilities, where the number of nodes grows quadratically in the number of time steps. We show in a number of numerical tests that we get accurate results in a fast manner, and that features which are essential for the practical use of stock option pricing algorithms, such as the incorporation of cash dividends and a term structure of interest rates, can easily be incorporated.

[1]  S. Ikonen,et al.  Efficient numerical methods for pricing American options under stochastic volatility , 2008 .

[2]  R. Lord,et al.  Why the Rotation Count Algorithm Works , 2006 .

[3]  Mark Broadie,et al.  Exact Simulation of Stochastic Volatility and Other Affine Jump Diffusion Processes , 2006, Oper. Res..

[4]  Michael J. Tomas,et al.  American stochastic volatility call option pricing: A lattice based approach , 1996 .

[5]  Peter A. Forsyth,et al.  Penalty methods for American options with stochastic volatility , 1998 .

[6]  Jari Toivanen,et al.  COMPONENTWISE SPLITTING METHODS FOR PRICING AMERICAN OPTIONS UNDER STOCHASTIC VOLATILITY , 2007 .

[7]  S. Levendorskii,et al.  American Options in the Heston Model With Stochastic Interest Rate , 2007 .

[8]  J. E. Hilliard,et al.  Binominal Option Pricing Under Stochastic Volatility and Correlated State Variables , 1996 .

[9]  Ionut Florescu,et al.  A binomial tree approach to stochastic volatility driven model of the stock price , 2005 .

[10]  D. Dijk,et al.  A comparison of biased simulation schemes for stochastic volatility models , 2008 .

[11]  Wim Schoutens,et al.  The little Heston trap , 2006 .

[12]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[13]  D. W. Stroock,et al.  Multidimensional Diffusion Processes , 1979 .

[14]  Cornelis W. Oosterlee,et al.  On multigrid for linear complementarity problems with application to American-style options. , 2003 .

[15]  Leif Andersen Simple and efficient simulation of the Heston stochastic volatility model , 2008 .

[16]  Gurdip Bakshi,et al.  Empirical Performance of Alternative Option Pricing Models , 1997 .

[17]  Kevin Parrott,et al.  Multigrid for American option pricing with stochastic volatility , 1999 .

[18]  J. Nieuwenhuis,et al.  Efficient Pricing of Derivatives on Assets with Discrete Dividends , 2006 .

[19]  Christian Kahl,et al.  Not-so-complex logarithms in the Heston model , 2006 .

[20]  P. Carr,et al.  Option valuation using the fast Fourier transform , 1999 .

[21]  A. Brandt,et al.  Multigrid Algorithms for the Solution of Linear Complementarity Problems Arising from Free Boundary Problems , 1983 .

[22]  Jochen W. Schmidt Positive and S-convex C1-interpolation of gridded three dimensional data , 1995 .

[23]  Jan Kallsen,et al.  A Didactic Note on Affine Stochastic Volatility Models , 2006 .

[24]  Daniel B. Nelson,et al.  Simple Binomial Processes as Diffusion Approximations in Financial Models , 1990 .

[25]  I. Florescu,et al.  Stochastic Volatility: Option Pricing using a Multinomial Recombining Tree , 2005 .

[26]  S. Shreve,et al.  Methods of Mathematical Finance , 2010 .

[27]  Lim Kian Guan,et al.  Pricing American options with stochastic volatility: Evidence from S&P 500 futures options , 2000 .

[28]  Dietmar P.J. Leisen Stock Evolution Under Stochastic Volatility , 2000 .

[29]  Jari Toivanen,et al.  Operator Splitting Methods for Pricing American Options with Stochastic Volatility , 2004 .