Complete and Stable Projective Harmonic InvariantS for Planar Contours Recognition

Planar shapes recognition is an important problem in computer vision and pattern recognition. We deal with planar shape contour views that differ by a general projective transformation. One method for solving such problem is to use projective invariants. In this work, we propose a projective and parameterization invariant generation framework based on the harmonic analysis theory. In fact, invariance to reparameterization is obtained by a projective arc length curve reparameterization process. Then, a complete and stable set of projective harmonic invariants is constructed from the Fourier coefficients computed on the reparameterized contours. We experiment this set of descriptors on analytic contours in order to recognize projectively similar ones.

[1]  Thomas R. Crimmins A Complete Set of Fourier Descriptors for Two-Dimensional Shapes , 1982, IEEE Transactions on Systems, Man, and Cybernetics.

[2]  Daniel Cremers,et al.  Integral Invariants for Shape Matching , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  P. M. Payton,et al.  Projective invariants for curves in two and three dimensions , 1992 .

[4]  Ari Visa,et al.  Multiscale Fourier descriptor for shape-based image retrieval , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[5]  E. Cartan,et al.  Leçons sur la géométrie projective complexe ; La théorie des groupes finis et continus et la géométrie différentielle traitées par la méthode du repère mobile ; Leçons sur la théorie des espaces à connexion projective , 1992 .

[6]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[7]  Wesley E. Snyder,et al.  Application of Affine-Invariant Fourier Descriptors to Recognition of 3-D Objects , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Isaac Weiss Noise-Resistant Invariants of Curves , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  C. V. Jawahar,et al.  Fourier domain representation of planar curves for recognition in multiple views , 2004, Pattern Recognit..

[10]  Andrew Zisserman,et al.  Geometric invariance in computer vision , 1992 .

[11]  J. Miller Numerical Analysis , 1966, Nature.

[12]  L. Gool,et al.  Semi-differential invariants , 1992 .