Spectrophotometric properties of materials observed by Pancam on the Mars Exploration Rovers: 2. Opportunity

[1] The Panoramic Camera (Pancam) on the Mars Exploration Rover Opportunity acquired visible/near-infrared multispectral observations of soils and rocks under varying viewing and illumination geometries that were modeled using radiative transfer theory to improve interpretations of the microphysical and surface scattering nature of materials in Meridiani Planum. Nearly 25,000 individual measurements were collected of rock and soil units identified by their color and morphologic properties over a wide range of phase angles (0–150°) at Eagle crater, in the surrounding plains, in Endurance crater, and in the plains between Endurance and Erebus craters through Sol 492. Corrections for diffuse skylight incorporated sky models based on observations of atmospheric opacity throughout the mission. Disparity maps created from Pancam stereo images allowed inclusion of local facet orientation estimates. Outcrop rocks overall exhibited the highest single scattering albedos (≤0.9 at 753 nm), and most spherule-rich soils exhibited the lowest (≤0.6 at 753 nm). Macroscopic roughness among outcrop rocks varied but was typically larger than spherule-rich soils. Data sets with sufficient phase angle coverage (resulting in well-constrained Hapke parameters) suggested that models using single-term and two-term Henyey-Greenstein phase functions exhibit a dominantly broad backscattering trend for most undisturbed spherule-rich soils. Rover tracks and other compressed soils exhibited forward scattering, while outcrop rocks were intermediate in their scattering behaviors. Some phase functions exhibited wavelength-dependent trends that may result from variations in thin deposits of airfall dust that occurred during the mission.

[1]  Jeffrey R. Johnson,et al.  Soil grain analyses at Meridiani Planum, Mars , 2006 .

[2]  Raymond E. Arvidson,et al.  Radiative transfer modeling of dust-coated Pancam calibration target materials: Laboratory visible/near-infrared spectrogoniometry , 2006 .

[3]  J. Bandfield,et al.  Determination and interpretation of surface and atmospheric Miniature Thermal Emission Spectrometer spectral end‐members at the Meridiani Planum landing site , 2006 .

[4]  S. Squyres,et al.  Mineralogy of the light-toned outcrop at Meridiani Planum as seen by the Miniature Thermal Emission Spectrometer and implications for its formation , 2006 .

[5]  Raymond E. Arvidson,et al.  Mossbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars: Opportunity's journey across sulfate-rich outcrop, basaltic sand and dust, and hematite lag deposits , 2006 .

[6]  William H. Farrand,et al.  Overview of the Opportunity Mars Exploration Rover mission to Meridiani Planum: Eagle crater to Purgatory ripple , 2006 .

[7]  Mars Exploration Rover Atmospheric Imaging: Dust Storms, Dust Devils, Dust Everywhere , 2006 .

[8]  Jeffrey R. Johnson,et al.  Spectral variability among rocks in visible and near‐infrared multispectral Pancam data collected at Gusev crater: Examinations using spectral mixture analysis and related techniques , 2006 .

[9]  Miles J. Johnson,et al.  In‐flight calibration and performance of the Mars Exploration Rover Panoramic Camera (Pancam) instruments , 2006 .

[10]  William H. Farrand,et al.  Spectrophotometric properties of materials observed by Pancam on the Mars Exploration Rovers: 1. Spirit: PANCAM PHOTOMETRY-SPIRIT , 2006 .

[11]  Nathalie A. Cabrol,et al.  Overview of the Microscopic Imager Investigation during Spirit's first 450 sols in Gusev crater , 2006 .

[12]  William H. Farrand,et al.  Overview of the Spirit Mars Exploration Rover Mission to Gusev Crater: Landing site to Backstay Rock in the Columbia Hills , 2006 .

[13]  Steven W. Squyres,et al.  Alpha Particle X‐Ray Spectrometer (APXS): Results from Gusev crater and calibration report , 2006 .

[14]  Rebecca Castano,et al.  Geology of the Gusev cratered plains from the Spirit rover transverse , 2006 .

[15]  D. Ming,et al.  Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit's journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills , 2006 .

[16]  Jeffrey R. Johnson,et al.  Characterization and petrologic interpretation of olivine‐rich basalts at Gusev Crater, Mars , 2006 .

[17]  Charles K. Thompson,et al.  Processing of Mars Exploration Rover Imagery for Science and Operations Planning , 2006 .

[18]  Jeffrey R. Johnson,et al.  Mars Express/HRSC imaging photoemtry and MER Spirit/PANCAM in situ spectrophotometry within Gusev , 2006 .

[19]  A. Knoll,et al.  Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns formation, Meridiani Planum, Mars , 2005 .

[20]  Jeffrey R. Johnson,et al.  Provenance and diagenesis of the evaporite-bearing Burns formation, Meridiani Planum, Mars , 2005 .

[21]  Robert G. Deen,et al.  Seeing in three dimensions: correlation and triangulation of Mars Exploration Rover imagery , 2005, 2005 IEEE International Conference on Systems, Man and Cybernetics.

[22]  Mars Exploration Rover Geologic traverse by the Spirit rover in the Plains of Gusev Crater, Mars , 2005 .

[23]  Robert G. Deen,et al.  Remote image analysis for Mars Exploration Rover mobility and manipulation operations , 2005, 2005 IEEE International Conference on Systems, Man and Cybernetics.

[24]  D. Ming,et al.  Aeolian processes at the Mars Exploration Rover Meridiani Planum landing site , 2005, Nature.

[25]  Raymond E. Arvidson,et al.  The size‐frequency and areal distribution of rock clasts at the Spirit landing site, Gusev Crater, Mars , 2005 .

[26]  A. Cord,et al.  Experimental determination of the surface photometric contribution in the spectral reflectance deconvolution processes for a simulated martian crater-like regolithic target , 2005 .

[27]  R E Arvidson,et al.  Spectral Reflectance and Morphologic Correlations in Eastern Terra Meridiani, Mars , 2005, Science.

[28]  T. Encrenaz,et al.  Mars Surface Diversity as Revealed by the OMEGA/Mars Express Observations , 2005, Science.

[29]  S. Erard,et al.  Derivation of Mars Surface Scattering Properties from OMEGA Spot Pointing Observations , 2005 .

[30]  R. Arvidson,et al.  Radiative Transfer Photometric Analyses at the Mars Exploration Rover Landing Sites , 2005 .

[31]  R. Jaumann,et al.  Photometric and compositional surface properties of the Gusev crater region, Mars, as derived from multi-angle, multi-spectral investigation of Mars Express HRSC data , 2005 .

[32]  R. Morris,et al.  Modeling Visible/Near-Infrared Photometric Properties of Dustfall on a Known Substrate , 2005 .

[33]  Patrick Pinet,et al.  Interpreting photometry of regolith-like surfaces with different topographies: shadowing and multiple scattering , 2005 .

[34]  R. Greeley,et al.  MARS EXPRESS IMAGING PHOTOMETRY AND SURFACE GEOLOGIC PROCESSES AT MARS: WHAT CAN BE MONITORED WITHIN GUSEV CRATER? , 2005 .

[35]  D. Ming,et al.  Pancam Multispectral Imaging Results from the Opportunity Rover at Meridiani Planum , 2004, Science.

[36]  Jimmy D Bell,et al.  Atmospheric Imaging Results from the Mars Exploration Rovers: Spirit and Opportunity , 2004, Science.

[37]  P H Smith,et al.  Evidence from Opportunity's Microscopic Imager for Water on Meridiani Planum , 2004, Science.

[38]  A. Knoll,et al.  The Opportunity Rover's Athena Science Investigation at Meridiani Planum, Mars , 2004, Science.

[39]  Raymond E. Arvidson,et al.  Mars Exploration Rover Pancam Photometric Data QUBs: Definition and Example Uses. , 2004 .

[40]  R E Arvidson,et al.  Initial Results from the Mini-TES Experiment in Gusev Crater from the Spirit Rover , 2004, Science.

[41]  R E Arvidson,et al.  Basaltic rocks analyzed by the Spirit Rover in Gusev Crater. , 2004, Science.

[42]  J F Bell,et al.  Surficial Deposits at Gusev Crater Along Spirit Rover Traverses , 2004, Science.

[43]  D. Ming,et al.  Pancam Multispectral Imaging Results from the Spirit Rover at Gusev Crater , 2004, Science.

[44]  D. Ming,et al.  Localization and Physical Properties Experiments Conducted by Spirit at Gusev Crater , 2004, Science.

[45]  R Sullivan,et al.  The Spirit Rover's Athena science investigation at Gusev Crater, Mars. , 2004, Science.

[46]  R. Greeley,et al.  Wind‐related features in Gusev crater, Mars , 2003 .

[47]  Raymond E. Arvidson,et al.  Mars Exploration Rover mission , 2003 .

[48]  M. Klimesh,et al.  Mars Exploration Rover engineering cameras , 2003 .

[49]  S. T. Elliot,et al.  Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation , 2003 .

[50]  Patrick Pinet,et al.  Planetary regolith surface analogs:: optimized determination of Hapke parameters using multi-angular spectro-imaging laboratory data , 2003 .

[51]  P. Christensen,et al.  THEMIS characterization of the MER Gusev crater landing site , 2003 .

[52]  M. Shepard,et al.  A Blind Test of Hapke's Photometric Model , 2003 .

[53]  Light scattering in the Martian atmosphere: Effects on Surface photometry. In Proceedings of the Eleventh Predoctoral School of the European Astrophysics Doctoral Network on. , 2001 .

[54]  Richard V. Morris,et al.  Mineralogy, composition, and alteration of Mars Pathfinder rocks and soils: Evidence from multispectral, elemental, and magnetic data on terrestrial analogue, SNC meteorite, and Pathfinder samples , 2000 .

[55]  R. J. Reid,et al.  Mineralogic and compositional properties of Martian soil and dust: Results from Mars Pathfinder , 2000 .

[56]  Paul Helfenstein,et al.  Submillimeter-Scale Topography of the Lunar Regolith , 1999 .

[57]  Mark T. Lemmon,et al.  Properties of dust in the Martian atmosphere from the Imager on Mars Pathfinder , 1999 .

[58]  Jeffrey R. Johnson,et al.  Chemical, multispectral, and textural constraints on the composition and origin of rocks at the Mars Pathfinder landing site , 1999 .

[59]  Nicolas Thomas,et al.  The color of the Martian sky and its influence on the illumination of the Martian surface , 1999 .

[60]  Nicolas Thomas,et al.  Preliminary results on photometric properties of materials at the Sagan Memorial Station, Mars , 1999 .

[61]  J. Bell,et al.  Near-Infrared Imaging of Mars from HST: Surface Reflectance, Photometric Properties, and Implications for MOLA Data , 1999 .

[62]  Raymond E. Arvidson,et al.  Optical scattering properties of terrestrial varnished basalts compared with rocks and soils at the Viking Lander sites , 1997 .

[63]  D. Domingue,et al.  The Scattering Properties of Natural Terrestrial Snows versus Icy Satellite Surfaces , 1997 .

[64]  D. Domingue,et al.  Scattering of Light by Individual Particles and the Implications for Models of Planetary Surfaces , 1996 .

[65]  R L Mancinelli,et al.  Reflectance spectroscopy of ferric sulfate-bearing montmorillonites as Mars soil analog materials. , 1995, Icarus.

[66]  Bruce Hapke,et al.  An Experimental Study of Light Scattering by Large, Irregular Particles , 1995 .

[67]  M. Shepard,et al.  Specular scattering on a terrestrial playa and implications for planetary surface studies , 1993 .

[68]  B. Hapke Theory of reflectance and emittance spectroscopy , 1993 .

[69]  R. Morris,et al.  Thermally altered palagonitic tephra: A spectral and process analog to the soil and dust of Mars , 1993 .

[70]  R. Singer,et al.  The igneous crust of Mars: compositional evidence from remote sensing and the SNC meteorites. , 1993 .

[71]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[72]  L. Soderblom The composition and mineralogy of the Martian surface from spectroscopic observations: 0.3 μm to 50 μm. , 1992 .

[73]  Richard W. Zurek,et al.  The martian dust cycle. , 1992 .

[74]  R. Arvidson,et al.  Physical and chemical weathering , 1992 .

[75]  A. Banin,et al.  Surface chemistry and mineralogy , 1992 .

[76]  A. McEwen Photometric functions for photoclinometry and other applications , 1991 .

[77]  J. Bell,et al.  Observational evidence of crystalline iron oxides on Mars , 1990 .

[78]  John F. Mustard,et al.  Photometric phase functions of common geologic minerals and applications to quantitative analysis of mineral mixture reflectance spectra , 1989 .

[79]  Raymond E. Arvidson,et al.  The Martian surface as imaged, sampled, and analyzed by the Viking landers , 1989 .

[80]  J. Veverka,et al.  Physical characterization of asteroid surfaces from photometric analysis , 1989 .

[81]  R. Arvidson,et al.  Nature and distribution of surficial deposits in Chryse Planitia and vicinity, Mars , 1988 .

[82]  Raymond E. Arvidson,et al.  On The spectral reflectance properties of materials exposed at the Viking landing sites , 1987 .

[83]  Joseph Veverka,et al.  Photometric properties of lunar terrains derived from Hapke's equation , 1987 .

[84]  Robert B. Singer,et al.  Mars surface composition from reflectance spectroscopy: A summary , 1979 .

[85]  Barney J. Conrath,et al.  Thermal structure of the Martian atmosphere during the dissipation of the dust storm of 1971 , 1975 .