Explorer Information Visualization Evaluation Using Crowdsourcing

Visualization researchers have been increasingly leveraging crowdsourcing approaches to overcome a number of limitations of controlled laboratory experiments, including small participant sample sizes and narrow demographic backgrounds of study participants. However, as a community, we have little understanding on when, where, and how researchers use crowdsourcing approaches for visualization research. In this paper, we review the use of crowdsourcing for evaluation in visualization research. We analyzed 190 crowdsourcing experiments, reported in 82 papers that were published in major visualization conferences and journals between 2006 and 2017. We tagged each experiment along 36 dimensions that we identified for crowdsourcing experiments. We grouped our dimensions into six important aspects: study design & procedure, task type, participants, measures & metrics, quality assurance, and reproducibility. We report on the main findings of our review and discuss challenges and opportunities for improvements in conducting crowdsourcing studies for visualization research.

[1]  L. Hardy,et al.  Tests for the Detection and Analysis of Color-Blindness. I. The Ishihara Test: An Evaluation , 1945 .

[2]  L. Hardy,et al.  Tests for the detection and analysis of color blindness; the Rabkin test. , 1946, Archives of ophthalmology.

[3]  Alan M. MacEachren,et al.  How Maps Work - Representation, Visualization, and Design , 1995 .

[4]  Ben Shneiderman,et al.  The eyes have it: a task by data type taxonomy for information visualizations , 1996, Proceedings 1996 IEEE Symposium on Visual Languages.

[5]  A. Glassner Interactive Storytelling: Techniques for 21st Century Fiction , 2004 .

[6]  Catherine Plaisant,et al.  The challenge of information visualization evaluation , 2004, AVI.

[7]  Gennady L. Andrienko,et al.  Exploratory analysis of spatial and temporal data - a systematic approach , 2005 .

[8]  P. Ubel,et al.  Measuring Numeracy without a Math Test: Development of the Subjective Numeracy Scale , 2007, Medical decision making : an international journal of the Society for Medical Decision Making.

[9]  Martin Wattenberg,et al.  Voyagers and voyeurs: supporting asynchronous collaborative information visualization , 2007, CHI.

[10]  M. Sheelagh T. Carpendale,et al.  Evaluating Information Visualizations , 2008, Information Visualization.

[11]  Bernice E. Rogowitz,et al.  Perceptual Organization in User-Generated Graph Layouts , 2008, IEEE Transactions on Visualization and Computer Graphics.

[12]  David W. McDonald,et al.  Proactive displays: Supporting awareness in fluid social environments , 2008, TCHI.

[13]  Michael S. Bernstein,et al.  Personalization via friendsourcing , 2010, TCHI.

[14]  Daniel M. Oppenheimer,et al.  Instructional Manipulation Checks: Detecting Satisficing to Increase Statistical Power , 2009 .

[15]  Mary Czerwinski,et al.  Selected Human Factors Issues in Information Visualization , 2009 .

[16]  Robert Kosara,et al.  Preconceptions and Individual Differences in Understanding Visual Metaphors , 2009, Comput. Graph. Forum.

[17]  Panagiotis G. Ipeirotis Analyzing the Amazon Mechanical Turk marketplace , 2010, XRDS.

[18]  Matthew O. Ward,et al.  Interactive Data Visualization - Foundations, Techniques, and Applications , 2010 .

[19]  Jeffrey Heer,et al.  Perceptual Guidelines for Creating Rectangular Treemaps , 2010, IEEE Transactions on Visualization and Computer Graphics.

[20]  Jing Jin,et al.  Interactive querying of temporal data using a comic strip metaphor , 2010, 2010 IEEE Symposium on Visual Analytics Science and Technology.

[21]  Jeffrey Heer,et al.  Crowdsourcing graphical perception: using mechanical turk to assess visualization design , 2010, CHI.

[22]  James Davis,et al.  Evaluating and improving the usability of Mechanical Turk for low-income workers in India , 2010, ACM DEV '10.

[23]  Robert Kosara,et al.  Laws of Attraction: From Perceptual Forces to Conceptual Similarity , 2010, IEEE Transactions on Visualization and Computer Graphics.

[24]  Lydia B. Chilton,et al.  Task search in a human computation market , 2010, HCOMP '10.

[25]  Michael S. Bernstein,et al.  Twitinfo: aggregating and visualizing microblogs for event exploration , 2011, CHI.

[26]  Sung-Hee Kim,et al.  Investigating the Efficacy of Crowdsourcing on Evaluating Visual Decision Supporting System , 2011 .

[27]  Aniket Kittur,et al.  Instrumenting the crowd: using implicit behavioral measures to predict task performance , 2011, UIST.

[28]  Jason Dykes,et al.  Visual Analytical Approaches to Evaluate Uncertainty and Bias in Crowdsourced Crisis Information , 2012 .

[29]  Aaron D. Shaw,et al.  Designing incentives for inexpert human raters , 2011, CSCW.

[30]  William Ribarsky,et al.  How locus of control influences compatibility with visualization style , 2011, 2011 IEEE Conference on Visual Analytics Science and Technology (VAST).

[31]  Eytan Adar,et al.  The impact of social information on visual judgments , 2011, CHI.

[32]  Gabriella Kazai,et al.  Worker types and personality traits in crowdsourcing relevance labels , 2011, CIKM '11.

[33]  Panagiotis G. Ipeirotis,et al.  Estimating the Completion Time of Crowdsourced Tasks Using Survival Analysis Models , 2011 .

[34]  Mor Naaman,et al.  Playable data: characterizing the design space of game-y infographics , 2011, CHI.

[35]  Hector Garcia-Molina,et al.  Turkalytics: analytics for human computation , 2011, WWW.

[36]  Kwong-Sak Leung,et al.  A Survey of Crowdsourcing Systems , 2011, 2011 IEEE Third Int'l Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third Int'l Conference on Social Computing.

[37]  Bernd Hamann,et al.  Progressive parallel coordinates , 2012, 2012 IEEE Pacific Visualization Symposium.

[38]  Dana Chandler,et al.  Breaking Monotony with Meaning: Motivation in Crowdsourcing Markets , 2012, ArXiv.

[39]  M. Sheelagh T. Carpendale,et al.  Empirical Studies in Information Visualization: Seven Scenarios , 2012, IEEE Transactions on Visualization and Computer Graphics.

[40]  Christian Keimel,et al.  Challenges in crowd-based video quality assessment , 2012, 2012 Fourth International Workshop on Quality of Multimedia Experience.

[41]  Pierre Dragicevic,et al.  Assessing the Effect of Visualizations on Bayesian Reasoning through Crowdsourcing , 2012, IEEE Transactions on Visualization and Computer Graphics.

[42]  Xin Zhang,et al.  Intelligent Graph Layout Using Many Users' Input , 2012, IEEE Transactions on Visualization and Computer Graphics.

[43]  Jeffrey Heer,et al.  Strategies for crowdsourcing social data analysis , 2012, CHI.

[44]  Klaus Mueller,et al.  Human Computation in Visualization: Using Purpose Driven Games for Robust Evaluation of Visualization Algorithms , 2012, IEEE Transactions on Visualization and Computer Graphics.

[45]  Tobias Isenberg,et al.  Evaluating Sketchiness as a Visual Variable for the Depiction of Qualitative Uncertainty , 2012, IEEE Transactions on Visualization and Computer Graphics.

[46]  Pat Hanrahan,et al.  An Empirical Model of Slope Ratio Comparisons , 2012, IEEE Transactions on Visualization and Computer Graphics.

[47]  Gabriella Kazai,et al.  An analysis of human factors and label accuracy in crowdsourcing relevance judgments , 2013, Information Retrieval.

[48]  Heike Hofmann,et al.  Graphical Tests for Power Comparison of Competing Designs , 2012, IEEE Transactions on Visualization and Computer Graphics.

[49]  Michael S. Bernstein,et al.  Analytic Methods for Optimizing Realtime Crowdsourcing , 2012, ArXiv.

[50]  Daniel McDuff,et al.  Crowdsourcing Facial Responses to Online Videos , 2012, IEEE Transactions on Affective Computing.

[51]  Aniket Kittur,et al.  CrowdScape: interactively visualizing user behavior and output , 2012, UIST.

[52]  Steven Franconeri,et al.  Comparing averages in time series data , 2012, CHI.

[53]  Lane Harrison,et al.  Exploring the impact of emotion on visual judgement , 2012, 2012 IEEE Conference on Visual Analytics Science and Technology (VAST).

[54]  Jeffrey Heer,et al.  Selecting Semantically‐Resonant Colors for Data Visualization , 2013, Comput. Graph. Forum.

[55]  Yaron Singer,et al.  Pricing mechanisms for crowdsourcing markets , 2013, WWW.

[56]  Matthew Lease,et al.  SQUARE: A Benchmark for Research on Computing Crowd Consensus , 2013, HCOMP.

[57]  Michael Gleicher,et al.  Quantity estimation in visualizations of tagged text , 2013, CHI.

[58]  Hanspeter Pfister,et al.  What Makes a Visualization Memorable? , 2013, IEEE Transactions on Visualization and Computer Graphics.

[59]  Stefano Tranquillini,et al.  Keep it simple: reward and task design in crowdsourcing , 2013, CHItaly '13.

[60]  Heli Väätäjä,et al.  Exploring augmented reality for user-generated hyperlocal news content , 2013, CHI Extended Abstracts.

[61]  Pat Hanrahan,et al.  Modeling how people extract color themes from images , 2013, CHI.

[62]  Wai-Tat Fu,et al.  Enhancing reliability using peer consistency evaluation in human computation , 2013, CSCW '13.

[63]  Henry A. Kautz,et al.  Real-time crowd labeling for deployable activity recognition , 2013, CSCW.

[64]  Steven Franconeri,et al.  Perception of Average Value in Multiclass Scatterplots , 2013, IEEE Transactions on Visualization and Computer Graphics.

[65]  Bongshin Lee,et al.  A Deeper Understanding of Sequence in Narrative Visualization , 2013, IEEE Transactions on Visualization and Computer Graphics.

[66]  Katharina Reinecke,et al.  Predicting users' first impressions of website aesthetics with a quantification of perceived visual complexity and colorfulness , 2013, CHI.

[67]  Hari Kalva,et al.  Assessing internet video quality using crowdsourcing , 2013, CrowdMM '13.

[68]  Steven Franconeri,et al.  Influencing visual judgment through affective priming , 2013, CHI.

[69]  Björn Hartmann,et al.  Identifying Redundancy and Exposing Provenance in Crowdsourced Data Analysis , 2013, IEEE Transactions on Visualization and Computer Graphics.

[70]  Julie Dorsey,et al.  Learning and Applying Color Styles From Feature Films , 2013, Comput. Graph. Forum.

[71]  Michael S. Bernstein,et al.  Learning Perceptual Kernels for Visualization Design , 2014, IEEE Transactions on Visualization and Computer Graphics.

[72]  Fei Wang,et al.  PEARL: An interactive visual analytic tool for understanding personal emotion style derived from social media , 2014, 2014 IEEE Conference on Visual Analytics Science and Technology (VAST).

[73]  Stefan Dietze,et al.  A taxonomy of microtasks on the web , 2014, HT.

[74]  Lora Aroyo,et al.  First International Workshop on User Interfaces for Crowdsourcing and Human Computation , 2014, AVI.

[75]  Yifan Hu,et al.  How to Display Group Information on Node-Link Diagrams: An Evaluation , 2014, IEEE Transactions on Visualization and Computer Graphics.

[76]  Fabio Casati,et al.  Toward effective tasks navigation in crowdsourcing , 2014, AVI.

[77]  Jacki O'Neill,et al.  Turk-Life in India , 2014, GROUP.

[78]  Phuoc Tran-Gia,et al.  Predicting result quality in Crowdsourcing using application layer monitoring , 2014, 2014 IEEE Fifth International Conference on Communications and Electronics (ICCE).

[79]  M. Sheelagh T. Carpendale,et al.  Pre-design empiricism for information visualization: scenarios, methods, and challenges , 2014, BELIV '14.

[80]  Vidya Setlur,et al.  Four Experiments on the Perception of Bar Charts , 2014, IEEE Transactions on Visualization and Computer Graphics.

[81]  Aniket Kittur,et al.  Reviewing versus doing: learning and performance in crowd assessment , 2014, CSCW.

[82]  Michael Gleicher,et al.  Task-driven evaluation of aggregation in time series visualization , 2014, CHI.

[83]  Simon Breslav,et al.  Mimic: visual analytics of online micro-interactions , 2014, AVI.

[84]  Charles Perin,et al.  A table!: improving temporal navigation in soccer ranking tables , 2014, CHI.

[85]  Tamara Munzner,et al.  Visualization Analysis and Design , 2014, A.K. Peters visualization series.

[86]  Andrew M. Webb,et al.  Using Metrics of Curation to Evaluate Information-Based Ideation , 2014, ACM Trans. Comput. Hum. Interact..

[87]  Marco Tagliasacchi,et al.  HistoGraph -- A Visualization Tool for Collaborative Analysis of Networks from Historical Social Multimedia Collections , 2014, 2014 18th International Conference on Information Visualisation.

[88]  Alexander Toet,et al.  The Perception of Visual UncertaintyRepresentation by Non-Experts , 2014, IEEE Transactions on Visualization and Computer Graphics.

[89]  Joseph G. Davis,et al.  User interface design for crowdsourcing systems , 2014, AVI.

[90]  Karthik Ramani,et al.  Tracing and sketching performance using blunt-tipped styli on direct-touch tablets , 2014, AVI.

[91]  Judith Redi,et al.  Best Practices and Recommendations for Crowdsourced QoE - Lessons learned from the Qualinet Task Force Crowdsourcing , 2014 .

[92]  Steven Franconeri,et al.  Ranking Visualizations of Correlation Using Weber's Law , 2014, IEEE Transactions on Visualization and Computer Graphics.

[93]  Michael Riegler,et al.  Mobile Picture Guess: A Crowdsourced Serious Game for Simulating Human Perception , 2014, SocInfo Workshops.

[94]  Jason Dykes,et al.  Glyphs for Exploring Crowd‐sourced Subjective Survey Classification , 2014, Comput. Graph. Forum.

[95]  Michelle X. Zhou,et al.  Understand users’ comprehension and preferences for composing information visualizations , 2014, TCHI.

[96]  Alex Endert,et al.  Finding Waldo: Learning about Users from their Interactions , 2014, IEEE Transactions on Visualization and Computer Graphics.

[97]  Isabelle Hupont,et al.  Bridging the gap between eye tracking and crowdsourcing , 2015, Electronic Imaging.

[98]  Álvaro Gomes,et al.  Crowdsourced Clustering of Computer Generated Floor Plans , 2015, CDVE.

[99]  Adam Marcus,et al.  The Effects of Sequence and Delay on Crowd Work , 2015, CHI.

[100]  Michael Wybrow,et al.  Crowdsourcing Technology to Support Academic Research , 2015, Crowdsourcing and Human-Centered Experiments.

[101]  Isabelle Hupont,et al.  Eye Tracker in the Wild: Studying the delta between what is said and measured in a crowdsourcing experiment , 2015, CrowdMM@ACM Multimedia.

[102]  Alan F. Blackwell,et al.  Interaction with Uncertainty in Visualisations , 2015, EuroVis.

[103]  Pingmei Xu,et al.  TurkerGaze: Crowdsourcing Saliency with Webcam based Eye Tracking , 2015, ArXiv.

[104]  Gem Stapleton,et al.  Visualizing Sets with Linear Diagrams , 2015, TCHI.

[105]  Sebastian Möller,et al.  Crowdsourcing Versus the Laboratory: Towards Human-Centered Experiments Using the Crowd , 2017, Crowdsourcing and Human-Centered Experiments.

[106]  Christoph Trattner,et al.  Towards a Recommender Engine for Personalized Visualizations , 2015, UMAP.

[107]  Katharina Reinecke,et al.  LabintheWild: Conducting Large-Scale Online Experiments With Uncompensated Samples , 2015, CSCW.

[108]  Jean-Daniel Fekete,et al.  Storytelling in Information Visualizations: Does it Engage Users to Explore Data? , 2015, CHI.

[109]  Stefan Dietze,et al.  Understanding Malicious Behavior in Crowdsourcing Platforms: The Case of Online Surveys , 2015, CHI.

[110]  Lane Harrison,et al.  An Evaluation of the Impact of Visual Embellishments in Bar Charts , 2015, Comput. Graph. Forum.

[111]  M. Sheelagh T. Carpendale,et al.  Understanding the Crowd: Ethical and Practical Matters in the Academic Use of Crowdsourcing , 2015, Crowdsourcing and Human-Centered Experiments.

[112]  Oded Nov,et al.  How Deceptive are Deceptive Visualizations?: An Empirical Analysis of Common Distortion Techniques , 2015, CHI.

[113]  Katharina Reinecke,et al.  Infographic Aesthetics: Designing for the First Impression , 2015, CHI.

[114]  Krzysztof Z. Gajos,et al.  A Crowdsourced Alternative to Eye-tracking for Visualization Understanding , 2015, CHI Extended Abstracts.

[115]  Alexander Klippel,et al.  PITFALLS AND POTENTIALS OF CROWD SCIENCE: A META-ANALYSIS OF CONTEXTUAL INFLUENCES , 2015 .

[116]  Radu Jianu,et al.  GraphUnit: Evaluating Interactive Graph Visualizations Using Crowdsourcing , 2015, Comput. Graph. Forum.

[117]  John D. Kelleher,et al.  Using Icicle Trees to Encode the Hierarchical Structure of Source Code , 2016, EuroVis.

[118]  Jean-Daniel Fekete,et al.  Suggested Interactivity: Seeking Perceived Affordances for Information Visualization , 2016, IEEE Transactions on Visualization and Computer Graphics.

[119]  Jaime Teevan,et al.  Chain Reactions: The Impact of Order on Microtask Chains , 2016, CHI.

[120]  Maurizio Marchese,et al.  ReLauncher: Crowdsourcing Micro-Tasks Runtime Controller , 2016, CSCW.

[121]  In-Kwon Lee,et al.  Image Recoloring with Valence‐Arousal Emotion Model , 2016, Comput. Graph. Forum.

[122]  Gabriella Kazai,et al.  Quality Management in Crowdsourcing using Gold Judges Behavior , 2016, WSDM.

[123]  K. D. Joshi,et al.  Why Individuals Participate in Micro-task Crowdsourcing Work Environment: Revealing Crowdworkers' Perceptions , 2016, J. Assoc. Inf. Syst..

[124]  Robert Kosara,et al.  Judgment Error in Pie Chart Variations , 2016, EuroVis.

[125]  Kim Marriott,et al.  HOLA: Human-like Orthogonal Network Layout , 2016, IEEE Transactions on Visualization and Computer Graphics.

[126]  Jeffrey Heer,et al.  Beyond Weber's Law: A Second Look at Ranking Visualizations of Correlation , 2016, IEEE Transactions on Visualization and Computer Graphics.

[127]  Marti A. Hearst,et al.  Evaluating Information Visualization via the Interplay of Heuristic Evaluation and Question-Based Scoring , 2016, CHI.

[128]  Anna L. Cox,et al.  Diminished Control in Crowdsourcing , 2016, ACM Trans. Comput. Hum. Interact..

[129]  Kwan-Liu Ma,et al.  A Study On Designing Effective Introductory Materials for Information Visualization , 2016, Comput. Graph. Forum.

[130]  Daniel Afergan,et al.  Improving Bayesian Reasoning: The Effects of Phrasing, Visualization, and Spatial Ability , 2016, IEEE Transactions on Visualization and Computer Graphics.

[131]  Min Chen,et al.  How Ordered Is It? On the Perceptual Orderability of Visual Channels , 2016, Comput. Graph. Forum.

[132]  J. Heinrich,et al.  Evaluating Viewpoint Entropy for Ribbon Representation of Protein Structure , 2016, Comput. Graph. Forum.

[133]  Maneesh Agrawala,et al.  Generating Personalized Spatial Analogies for Distances and Areas , 2016, CHI.

[134]  Bongshin Lee,et al.  A Comparative Evaluation on Online Learning Approaches using Parallel Coordinate Visualization , 2016, CHI.

[135]  Danielle Albers Szafir,et al.  Lightness Constancy in Surface Visualization , 2016, IEEE Transactions on Visualization and Computer Graphics.

[136]  Tovi Grossman,et al.  The Effect of Visual Appearance on the Performance of Continuous Sliders and Visual Analogue Scales , 2016, CHI.

[137]  Robert Kosara,et al.  Arcs, Angles, or Areas: Individual Data Encodings in Pie and Donut Charts , 2016, Comput. Graph. Forum.

[138]  Hanspeter Pfister,et al.  Guidelines for Effective Usage of Text Highlighting Techniques , 2016, IEEE Transactions on Visualization and Computer Graphics.

[139]  Susann Fiedler,et al.  Badges to Acknowledge Open Practices: A Simple, Low-Cost, Effective Method for Increasing Transparency , 2016, PLoS biology.

[140]  Gang Wang,et al.  Unsupervised Clickstream Clustering for User Behavior Analysis , 2016, CHI.

[141]  Timo Ropinski,et al.  A crowdsourcing system for integrated and reproducible evaluation in scientific visualization , 2016, 2016 IEEE Pacific Visualization Symposium (PacificVis).

[142]  Marina Daecher,et al.  Experimental Human Computer Interaction A Practical Guide With Visual Examples , 2016 .

[143]  Sean A. Munson,et al.  When (ish) is My Bus?: User-centered Visualizations of Uncertainty in Everyday, Mobile Predictive Systems , 2016, CHI.

[144]  Lynne Baillie,et al.  Investigating Time Series Visualisations to Improve the User Experience , 2016, CHI.

[145]  Tobias Hoßfeld,et al.  Evaluation in the Crowd. Crowdsourcing and Human-Centered Experiments , 2017, Lecture Notes in Computer Science.

[146]  Rafael Veras,et al.  Optimizing Hierarchical Visualizations with the Minimum Description Length Principle , 2017, IEEE Transactions on Visualization and Computer Graphics.

[147]  M. Sheelagh T. Carpendale,et al.  Visualization Viewpoints , 2002 .

[148]  Kristen Grauman,et al.  CrowdVerge: Predicting If People Will Agree on the Answer to a Visual Question , 2017, CHI.

[149]  Morten Fjeld,et al.  ReTool: Interactive Microtask and Workflow Design through Demonstration , 2017, CHI.

[150]  Jeffrey Heer,et al.  Regression by Eye: Estimating Trends in Bivariate Visualizations , 2017, CHI.

[151]  Bongshin Lee,et al.  Visual Narrative Flow: Exploring Factors Shaping Data Visualization Story Reading Experiences , 2017, Comput. Graph. Forum.

[152]  Wouter Meulemans,et al.  Map LineUps: Effects of spatial structure on graphical inference , 2017, IEEE Transactions on Visualization and Computer Graphics.

[153]  Jian Zhao,et al.  Annotation Graphs: A Graph-Based Visualization for Meta-Analysis of Data Based on User-Authored Annotations , 2017, IEEE Transactions on Visualization and Computer Graphics.

[154]  Antti Oulasvirta,et al.  Towards Perceptual Optimization of the Visual Design of Scatterplots , 2017, IEEE Transactions on Visualization and Computer Graphics.

[155]  Sarah H. Creem-Regehr,et al.  Evaluating the Impact of Binning 2D Scalar Fields , 2017, IEEE Transactions on Visualization and Computer Graphics.

[156]  Elizabeth Gerber,et al.  From in the Class or in the Wild?: Peers Provide Better Design Feedback Than External Crowds , 2017, CHI.

[157]  Paul Parsons,et al.  Assessing User Engagement in Information Visualization , 2017, CHI Extended Abstracts.

[158]  Pierre Dragicevic,et al.  Narratives in Crowdsourced Evaluation of Visualizations: A Double-Edged Sword? , 2017, CHI.

[159]  Cheng Deng,et al.  HindSight: Encouraging Exploration through Direct Encoding of Personal Interaction History , 2017, IEEE Transactions on Visualization and Computer Graphics.

[160]  Stefan Dietze,et al.  Using Worker Self-Assessments for Competence-Based Pre-Selection in Crowdsourcing Microtasks , 2017, ACM Trans. Comput. Hum. Interact..

[161]  Cecilia R. Aragon,et al.  Aeonium: Visual analytics to support collaborative qualitative coding , 2017, 2017 IEEE Pacific Visualization Symposium (PacificVis).

[162]  Katharina Reinecke,et al.  Explaining the Gap: Visualizing One's Predictions Improves Recall and Comprehension of Data , 2017, CHI.

[163]  Jon Froehlich,et al.  Differences in Crowdsourced vs. Lab-based Mobile and Desktop Input Performance Data , 2017, CHI.

[164]  Keiichiro Hoashi,et al.  Crowdsourcing GO: Effect of Worker Situation on Mobile Crowdsourcing Performance , 2017, CHI.

[165]  A. Ghezzi,et al.  Crowdsourcing: A Review and Suggestions for Future Research , 2018 .

[166]  Steven Franconeri,et al.  Taking Word Clouds Apart: An Empirical Investigation of the Design Space for Keyword Summaries , 2018, IEEE Transactions on Visualization and Computer Graphics.

[167]  Krzysztof Z. Gajos,et al.  BubbleView , 2017, ACM Trans. Comput. Hum. Interact..