Optically Powered Optical Transmitter Using a Single Light-Emitting Diode

An optically powered optical transmitter using a single light-emitting diode (LED) is presented with a batteryless and low-power temperature sensor node. The commercially available AlGaAs LED has higher open-circuit voltage (~1.2 V) than CMOS photodiode (~0.5 V), such that an analog/mixed signal design in 0.18-<inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula> process can be powered directly without losing efficiency to a sustained voltage boosting scheme. Higher voltage is needed only during brief transmissions. A scalable, inverter-based, switched capacitor voltage boosting transmitter drives the LED in short pulses with 93% electrical energy efficiency. Three consecutive pulses are sent as preamble symbol, two as logic 0 and one as logic 1. The microsystem features a <inline-formula> <tex-math notation="LaTeX">$\Delta V_{{\text {BE}}}$ </tex-math></inline-formula>-based temperature sensor with a data-dependent partial conversion scheme to save energy. The sensor expends 1 nJ/full conversion at 5 kSa/s and 0.25 nJ/partial conversion at 20 kSa/s. The transmitter can serially output data at 1 nJ/pulse; 10-cm detection distance is achieved under 6-mW/mm<sup>2</sup> light intensity using an in-house photodiode detector circuit. The circuitry dissipates 6 <inline-formula> <tex-math notation="LaTeX">$\mu \text{W}$ </tex-math></inline-formula> in total at 1.2-V nominal voltage. It consists of a 0.1-mm<sup>2</sup> LED die, 2.25-mm<sup>2</sup> IC, and a surface mounted device storage capacitor, taking approximately 1-mm<sup>3</sup> volume.

[1]  Amine Bermak,et al.  A Passive RFID Tag Embedded Temperature Sensor With Improved Process Spreads Immunity for a $-{\hbox {30}}^{\circ}{\hbox {C}}$ to 60$^{\circ}{\hbox {C}}$ Sensing Range , 2014, IEEE Transactions on Circuits and Systems I: Regular Papers.

[2]  David Blaauw,et al.  Circuits for a Cubic-Millimeter Energy-Autonomous Wireless Intraocular Pressure Monitor , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[3]  Xing Chen,et al.  A 6.45 $\mu{\rm W}$ Self-Powered SoC With Integrated Energy-Harvesting Power Management and ULP Asymmetric Radios for Portable Biomedical Systems , 2015, IEEE Transactions on Biomedical Circuits and Systems.

[4]  Amine Bermak,et al.  Correction to "A Sub- μ W Embedded CMOS Temperature Sensor for RFID Food Monitoring Application" [Jun 10 1246-1255] , 2010, IEEE J. Solid State Circuits.

[5]  David Blaauw,et al.  A millimeter-scale wireless imaging system with continuous motion detection and energy harvesting , 2014, 2014 Symposium on VLSI Circuits Digest of Technical Papers.

[6]  Josef A. Nossek,et al.  Optimal charging of capacitors , 2000 .

[7]  A. L. Barnabei,et al.  A wireless irradiance-temperature-humidity sensor for photovoltaic plant monitoring applications , 2012, 2012 IEEE Sensors.

[8]  Jörg Müller,et al.  Development of an Active Intravascular MR Device With an Optical Transmission System , 2008, IEEE Transactions on Medical Imaging.

[9]  Thomas Stieglitz,et al.  An Optically Powered Single-Channel Stimulation Implant as Test System for Chronic Biocompatibility and Biostability of Miniaturized Retinal Vision Prostheses , 2007, IEEE Transactions on Biomedical Engineering.

[10]  David Blaauw,et al.  System-On-Mud: Ultra-Low Power Oceanic Sensing Platform Powered by Small-Scale Benthic Microbial Fuel Cells , 2015, IEEE Transactions on Circuits and Systems I: Regular Papers.

[11]  David Blaauw,et al.  An Ultra-Low Power Fully Integrated Energy Harvester Based on Self-Oscillating Switched-Capacitor Voltage Doubler , 2014, IEEE Journal of Solid-State Circuits.

[12]  Eli Yablonovitch,et al.  Strong Internal and External Luminescence as Solar Cells Approach the Shockley–Queisser Limit , 2012, IEEE Journal of Photovoltaics.

[13]  Joseph M. Kahn,et al.  An autonomous 16 mm/sup 3/ solar-powered node for distributed wireless sensor networks , 2002, Proceedings of IEEE Sensors.

[14]  David Blaauw,et al.  Circuit techniques for miniaturized biomedical sensors , 2014, Proceedings of the IEEE 2014 Custom Integrated Circuits Conference.

[15]  David Blaauw,et al.  21.4 A >78%-efficient light harvester over 100-to-100klux with reconfigurable PV-cell network and MPPT circuit , 2016, 2016 IEEE International Solid-State Circuits Conference (ISSCC).

[16]  Daryl R. Kipke,et al.  Wireless implantable microsystems: high-density electronic interfaces to the nervous system , 2004, Proceedings of the IEEE.

[17]  Johan H. Huijsing,et al.  Precision Temperature Sensors in CMOS Technology , 2006 .

[18]  Yi Xie,et al.  A 0.6-V 10-bit 200-kS/s Fully Differential SAR ADC With Incremental Converting Algorithm for Energy Efficient Applications , 2016, IEEE Transactions on Circuits and Systems I: Regular Papers.

[19]  A. Yalçinkaya,et al.  Optoelectronic CMOS Power Supply Unit for Electrically Isolated Microscale Applications , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[20]  D. Blaauw,et al.  AlGaAs Photovoltaics for Indoor Energy Harvesting in mm-Scale Wireless Sensor Nodes , 2015, IEEE Transactions on Electron Devices.

[21]  Edward H. Hellen,et al.  Verifying the diode-capacitor circuit voltage decay , 2003 .

[22]  Nikolaos G. Bourbakis,et al.  A Survey on Wearable Sensor-Based Systems for Health Monitoring and Prognosis , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[23]  Amine Bermak,et al.  A Passive RFID Tag Embedded Temperature Sensor With Improved Process Spreads Immunity for a -30°C to 60°C Sensing Range. , 2014 .

[24]  M. Jamal,et al.  Tetherless Microgrippers With Transponder Tags , 2011, Journal of Microelectromechanical Systems.

[25]  P. Bhattacharya,et al.  Semiconductor Optoelectronic Devices , 1993 .

[26]  Bo Gao,et al.  A System-on-Chip EPC Gen-2 Passive UHF RFID Tag With Embedded Temperature Sensor , 2010, IEEE Journal of Solid-State Circuits.

[27]  Anantha Chandrakasan,et al.  23.2 A 1.1nW energy harvesting system with 544pW quiescent power for next-generation implants , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[28]  Iskender Haydaroglu,et al.  Optical Power Delivery and Data Transmission in a Wireless and Batteryless Microsystem Using a Single Light Emitting Diode , 2015, Journal of Microelectromechanical Systems.

[29]  Christopher Soell,et al.  Remote Powered Medical Implants for Telemonitoring , 2014, Proceedings of the IEEE.

[30]  Dominic C. O'Brien,et al.  Design and implementation of optical wireless communications with optically powered smart dust motes , 2009, IEEE Journal on Selected Areas in Communications.

[31]  Fan Zhang,et al.  A Batteryless 19 $\mu$W MICS/ISM-Band Energy Harvesting Body Sensor Node SoC for ExG Applications , 2013, IEEE Journal of Solid-State Circuits.

[32]  Anantha P. Chandrakasan,et al.  11.3 A 10b 0.6nW SAR ADC with data-dependent energy savings using LSB-first successive approximation , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).