Convergence Analysis of High-Order Time-Splitting Pseudospectral Methods for Nonlinear Schrödinger Equations

In this work, the issue of favorable numerical methods for the space and time discretization of low-dimensional nonlinear Schrodinger equations is addressed. The objective is to provide a stability and error analysis of high-accuracy discretizations that rely on spectral and splitting methods. As a model problem, the time-dependent Gross--Pitaevskii equation arising in the description of Bose--Einstein condensates is considered. For the space discretization pseudospectral methods collocated at the associated quadrature nodes are analyzed. For the time integration high-order exponential operator splitting methods are studied, where the decomposition of the function defining the partial differential equation is chosen in accordance with the underlying spectral method. The convergence analysis relies on a general framework of abstract nonlinear evolution equations and fractional power spaces defined by the principal linear part. Essential tools in the derivation of a temporal global error estimate are furthe...

[1]  Shi Jin,et al.  Numerical Study of Time-Splitting Spectral Discretizations of Nonlinear Schrödinger Equations in the Semiclassical Regimes , 2003, SIAM J. Sci. Comput..

[2]  P. Markowich,et al.  Numerical solution of the Gross--Pitaevskii equation for Bose--Einstein condensation , 2003, cond-mat/0303239.

[3]  G. Quispel,et al.  Acta Numerica 2002: Splitting methods , 2002 .

[4]  Mechthild Thalhammer,et al.  High-Order Exponential Operator Splitting Methods for Time-Dependent Schrödinger Equations , 2008, SIAM J. Numer. Anal..

[5]  W. Gautschi Orthogonal Polynomials: Computation and Approximation , 2004 .

[6]  Mechthild Thalhammer,et al.  Embedded exponential operator splitting methods for the time integration of nonlinear evolution equations , 2013 .

[7]  E. Gross Structure of a quantized vortex in boson systems , 1961 .

[8]  S. Blanes,et al.  Practical symplectic partitioned Runge--Kutta and Runge--Kutta--Nyström methods , 2002 .

[9]  C. Sulem,et al.  The nonlinear Schrödinger equation : self-focusing and wave collapse , 2004 .

[10]  Jie Shen,et al.  A Fourth-Order Time-Splitting Laguerre-Hermite Pseudospectral Method for Bose-Einstein Condensates , 2005, SIAM J. Sci. Comput..

[11]  Jie Shen,et al.  Spectral and Pseudospectral Approximations Using Hermite Functions: Application to the Dirac Equation , 2003, Adv. Comput. Math..

[12]  Mechthild Thalhammer,et al.  The Lie–Trotter splitting for nonlinear evolutionary problems with critical parameters: a compact local error representation and application to nonlinear Schrödinger equations in the semiclassical regime , 2013 .

[13]  Mechthild Thalhammer,et al.  Defect-based local error estimators for splitting methods, with application to Schrödinger equations, Part I: The linear case , 2012, J. Comput. Appl. Math..

[14]  Mechthild Thalhammer,et al.  A numerical study of adaptive space and time discretisations for Gross–Pitaevskii equations , 2012, J. Comput. Phys..

[15]  Christian Lubich,et al.  On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations , 2008, Math. Comput..

[16]  Jie Shen,et al.  A Generalized-Laguerre--Fourier--Hermite Pseudospectral Method for Computing the Dynamics of Rotating Bose--Einstein Condensates , 2009, SIAM J. Sci. Comput..

[17]  C. Lubich,et al.  Error Bounds for Exponential Operator Splittings , 2000 .

[18]  G. Burton Sobolev Spaces , 2013 .

[19]  Mechthild Thalhammer,et al.  High-order time-splitting Hermite and Fourier spectral methods , 2009, J. Comput. Phys..

[20]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[21]  Jie Shen,et al.  Error Analysis of the Strang Time-Splitting Laguerre–Hermite/Hermite Collocation Methods for the Gross–Pitaevskii Equation , 2013, Found. Comput. Math..

[22]  S. Descombes,et al.  An exact local error representation of exponential operator splitting methods for evolutionary problems and applications to linear Schrödinger equations in the semi-classical regime , 2010 .

[23]  R. Nagel,et al.  One-parameter semigroups for linear evolution equations , 1999 .

[24]  J. M. Sanz-Serna,et al.  Numerical Hamiltonian Problems , 1994 .

[25]  Víctor M. Pérez-García,et al.  Numerical methods for the simulation of trapped nonlinear Schrödinger systems , 2003, Appl. Math. Comput..

[26]  Mechthild Thalhammer,et al.  Error analysis of high-order splitting methods for nonlinear evolutionary Schrödinger equations and application to the MCTDHF equations in electron dynamics , 2013 .

[27]  L. Gauckler,et al.  Convergence of a split-step Hermite method for the Gross–Pitaevskii equation , 2011 .