Convergence Analysis of High-Order Time-Splitting Pseudospectral Methods for Nonlinear Schrödinger Equations
暂无分享,去创建一个
[1] Shi Jin,et al. Numerical Study of Time-Splitting Spectral Discretizations of Nonlinear Schrödinger Equations in the Semiclassical Regimes , 2003, SIAM J. Sci. Comput..
[2] P. Markowich,et al. Numerical solution of the Gross--Pitaevskii equation for Bose--Einstein condensation , 2003, cond-mat/0303239.
[3] G. Quispel,et al. Acta Numerica 2002: Splitting methods , 2002 .
[4] Mechthild Thalhammer,et al. High-Order Exponential Operator Splitting Methods for Time-Dependent Schrödinger Equations , 2008, SIAM J. Numer. Anal..
[5] W. Gautschi. Orthogonal Polynomials: Computation and Approximation , 2004 .
[6] Mechthild Thalhammer,et al. Embedded exponential operator splitting methods for the time integration of nonlinear evolution equations , 2013 .
[7] E. Gross. Structure of a quantized vortex in boson systems , 1961 .
[8] S. Blanes,et al. Practical symplectic partitioned Runge--Kutta and Runge--Kutta--Nyström methods , 2002 .
[9] C. Sulem,et al. The nonlinear Schrödinger equation : self-focusing and wave collapse , 2004 .
[10] Jie Shen,et al. A Fourth-Order Time-Splitting Laguerre-Hermite Pseudospectral Method for Bose-Einstein Condensates , 2005, SIAM J. Sci. Comput..
[11] Jie Shen,et al. Spectral and Pseudospectral Approximations Using Hermite Functions: Application to the Dirac Equation , 2003, Adv. Comput. Math..
[12] Mechthild Thalhammer,et al. The Lie–Trotter splitting for nonlinear evolutionary problems with critical parameters: a compact local error representation and application to nonlinear Schrödinger equations in the semiclassical regime , 2013 .
[13] Mechthild Thalhammer,et al. Defect-based local error estimators for splitting methods, with application to Schrödinger equations, Part I: The linear case , 2012, J. Comput. Appl. Math..
[14] Mechthild Thalhammer,et al. A numerical study of adaptive space and time discretisations for Gross–Pitaevskii equations , 2012, J. Comput. Phys..
[15] Christian Lubich,et al. On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations , 2008, Math. Comput..
[16] Jie Shen,et al. A Generalized-Laguerre--Fourier--Hermite Pseudospectral Method for Computing the Dynamics of Rotating Bose--Einstein Condensates , 2009, SIAM J. Sci. Comput..
[17] C. Lubich,et al. Error Bounds for Exponential Operator Splittings , 2000 .
[18] G. Burton. Sobolev Spaces , 2013 .
[19] Mechthild Thalhammer,et al. High-order time-splitting Hermite and Fourier spectral methods , 2009, J. Comput. Phys..
[20] E. Hairer,et al. Geometric Numerical Integration , 2022, Oberwolfach Reports.
[21] Jie Shen,et al. Error Analysis of the Strang Time-Splitting Laguerre–Hermite/Hermite Collocation Methods for the Gross–Pitaevskii Equation , 2013, Found. Comput. Math..
[22] S. Descombes,et al. An exact local error representation of exponential operator splitting methods for evolutionary problems and applications to linear Schrödinger equations in the semi-classical regime , 2010 .
[23] R. Nagel,et al. One-parameter semigroups for linear evolution equations , 1999 .
[24] J. M. Sanz-Serna,et al. Numerical Hamiltonian Problems , 1994 .
[25] Víctor M. Pérez-García,et al. Numerical methods for the simulation of trapped nonlinear Schrödinger systems , 2003, Appl. Math. Comput..
[26] Mechthild Thalhammer,et al. Error analysis of high-order splitting methods for nonlinear evolutionary Schrödinger equations and application to the MCTDHF equations in electron dynamics , 2013 .
[27] L. Gauckler,et al. Convergence of a split-step Hermite method for the Gross–Pitaevskii equation , 2011 .