Trees, valuations, and the Bieri-Neumann-Strebel invariant
暂无分享,去创建一个
[1] R. Bieri,et al. A geometric invariant for modules over an Abelian group. , 1981 .
[2] R. Bieri,et al. The geometry of the set of characters iduced by valuations. , 1984 .
[3] R. Bieri,et al. Valuations and Finitely Presented Metabelian Groups , 1980 .
[4] W. Magnus,et al. Combinatorial Group Theory: COMBINATORIAL GROUP THEORY , 1967 .
[5] Jacques Tits,et al. A “theorem of Lie-Kolchin” for trees , 1977 .
[6] Kenneth S. Brown,et al. Finiteness properties of groups , 1987 .
[7] S. M. Gersten,et al. Combinatorial group theory and topology , 1987 .
[8] Hyman Bass,et al. LENGTH FUNCTIONS OF GROUP ACTIONS ON A-TREES , 1987 .
[9] R. Bieri,et al. Almost finitely presented soluble groups , 1978 .
[10] R. Bieri,et al. A geometric invariant of discrete groups , 1987 .
[11] C. Houghton. The first cohomology of a group with permutation module coefficients , 1978 .
[12] G. Bergman. A weak Nullstellensatz for valuations , 1971 .
[13] R. Lyndon,et al. Combinatorial Group Theory , 1977 .