On the simplified pair-copula construction - Simply useful or too simplistic?

Due to their high flexibility, yet simple structure, pair-copula constructions (PCCs) are becoming increasingly popular for constructing continuous multivariate distributions. However, inference requires the simplifying assumption that all the pair-copulae depend on the conditioning variables merely through the two conditional distribution functions that constitute their arguments, and not directly. In terms of standard measures of dependence, we express conditions under which a specific pair-copula decomposition of a multivariate distribution is of this simplified form. Moreover, we show that the simplified PCC in fact is a rather good approximation, even when the simplifying assumption is far from being fulfilled by the actual model.

[1]  K. V. Mardia,et al.  Some Results on the Order Statistics of the Multivariate Normal and Pareto Type 1 Populations , 1964 .

[2]  T. Bedford,et al.  Vines: A new graphical model for dependent random variables , 2002 .

[3]  G. Simons,et al.  On the theory of elliptically contoured distributions , 1981 .

[4]  Ernesto Schirmacher Multivariate Dependence Modeling using Pair-Copulas , 2008 .

[5]  H. Joe Families of $m$-variate distributions with given margins and $m(m-1)/2$ bivariate dependence parameters , 1996 .

[6]  C. Czado,et al.  Bayesian inference for multivariate copulas using pair-copula constructions. , 2010 .

[7]  K. Aas,et al.  Models for construction of multivariate dependence – a comparison study , 2009 .

[8]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[9]  Roger M. Cooke,et al.  Probability Density Decomposition for Conditionally Dependent Random Variables Modeled by Vines , 2001, Annals of Mathematics and Artificial Intelligence.

[10]  Ludger Rüschendorf,et al.  Distributions with fixed marginals and related topics , 1999 .

[11]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[12]  Kanti V. Mardia,et al.  Multivariate Pareto Distributions , 1962 .

[13]  Marita Stien,et al.  D-vine Creation of Non-Gaussian Random Fields Two-point Interactions to the Limit Marita Stien dd Kolbjørnsen , 2008 .

[14]  A. Frigessi,et al.  Pair-copula constructions of multiple dependence , 2009 .

[15]  S. Rachev Handbook of heavy tailed distributions in finance , 2003 .

[16]  M. E. Johnson,et al.  A Family of Distributions for Modelling Non‐Elliptically Symmetric Multivariate Data , 1981 .

[17]  Kjersti Aas,et al.  Models for construction of multivariate dependence , 2007 .

[18]  H. Joe Multivariate models and dependence concepts , 1998 .

[19]  P. Embrechts,et al.  Chapter 8 – Modelling Dependence with Copulas and Applications to Risk Management , 2003 .

[20]  Samuel Kotz,et al.  Systems of Continuous Multivariate Distributions , 2005 .

[21]  R. Nelsen An Introduction to Copulas , 1998 .

[22]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[23]  J. M. Hammersley,et al.  Markov fields on finite graphs and lattices , 1971 .

[24]  Claudia Czado,et al.  Pair-copula constructions for modeling exchange rate dependence , 2009 .

[25]  H. Gerber,et al.  Editorial to the special issue on modeling and measurement of multivariate risk in insurance and finance , 2009 .

[26]  Andréas Heinen,et al.  Asymmetric CAPM Dependence for Large Dimensions: The Canonical Vine Autoregressive Copula Model , 2008 .

[27]  Matthias Fischer,et al.  Multivariate Copula Models at Work: Outperforming the desert island copula? , 2007 .

[28]  Aristidis K. Nikoloulopoulos,et al.  Tail dependence functions and vine copulas , 2010, J. Multivar. Anal..

[29]  P. Embrechts,et al.  Quantitative Risk Management: Concepts, Techniques, and Tools , 2005 .

[30]  Collin Carbno,et al.  Uncertainty Analysis With High Dimensional Dependence Modelling , 2007, Technometrics.

[31]  Dimitris Karlis,et al.  Copula model evaluation based on parametric bootstrap , 2008, Comput. Stat. Data Anal..

[32]  Koiti Takahasi,et al.  Note on the multivariate burr’s distribution , 1965 .

[33]  Andréas Heinen,et al.  Modeling International Financial Returns with a Multivariate Regime Switching Copula , 2008 .