Gaussian quantum illumination via monotone metrics

Quantum illumination is to discern the presence or absence of a low reflectivity target, where the error probability decays exponentially in the number of copies used. When the target reflectivity is small so that it is hard to distinguish target presence or absence, the exponential decay constant falls into a class of objects called monotone metrics. We evaluate monotone metrics restricted to Gaussian states in terms of first-order moments and covariance matrix. Under the assumption of a low reflectivity target, we explicitly derive analytic formulae for decay constant of an arbitrary Gaussian input state. Especially, in the limit of large background noise and low reflectivity, there is no need of symplectic diagonalization which usually complicates the computation of decay constants. First, we show that two-mode squeezed vacuum (TMSV) states are the optimal probe among pure Gaussian states with fixed signal mean photon number. Second, as an alternative to preparing TMSV states with high mean photon number, we show that preparing a TMSV state with low mean photon number and displacing the signal mode is a more experimentally feasible setup without degrading the performance that much. Third, we show that it is of utmost importance to prepare an efficient idler memory to beat coherent states and provide analytic bounds on the idler memory transmittivity in terms of signal power, background noise, and idler memory noise. Finally, we identify the region of physically possible correlations between the signal and idler modes that can beat coherent states.

[1]  Robert H. Jonsson,et al.  Gaussian quantum estimation of the loss parameter in a thermal environment , 2022, Journal of Physics A: Mathematical and Theoretical.

[2]  Yonggi Jo,et al.  Observable bound for Gaussian illumination , 2021, Physical Review A.

[3]  J. Jeffers,et al.  Gaussian state-based quantum illumination with simple photodetection. , 2020, Optics express.

[4]  Stefano Pirandola,et al.  Quantum illumination with a generic Gaussian source , 2020, Physical Review Research.

[5]  R. Nair,et al.  Fundamental limits of quantum illumination , 2020, 2002.12252.

[6]  P. Lam,et al.  A high-fidelity heralded quantum squeezing gate , 2020, Nature Photonics.

[7]  P. Lam,et al.  A high-fidelity heralded quantum squeezing gate , 2020, 2006.01059.

[8]  J. Fink,et al.  Microwave quantum illumination using a digital receiver , 2019, Science Advances.

[9]  B. Balaji,et al.  Quantum-enhanced noise radar , 2018, Applied Physics Letters.

[10]  M. S. Zubairy,et al.  Quantum illumination using non-Gaussian states generated by photon subtraction and photon addition , 2018, Physical Review A.

[11]  Giacomo De Palma,et al.  Minimum error probability of quantum illumination , 2018, Physical Review A.

[12]  Dominik Šafránek Estimation of Gaussian quantum states , 2017, Journal of Physics A: Mathematical and Theoretical.

[13]  Mark M. Wilde,et al.  Rényi relative entropies of quantum Gaussian states , 2017, Journal of Mathematical Physics.

[14]  A. Serafini Quantum Continuous Variables: A Primer of Theoretical Methods , 2017 .

[15]  U. Las Heras,et al.  Quantum illumination reveals phase-shift inducing cloaking , 2016, Scientific Reports.

[16]  Jeffrey H. Shapiro,et al.  Optimum mixed-state discrimination for noisy entanglement-enhanced sensing , 2016, 2017 Conference on Lasers and Electro-Optics (CLEO).

[17]  E Solano,et al.  Quantum Estimation Methods for Quantum Illumination. , 2016, Physical review letters.

[18]  P. Marian,et al.  Quantum Fisher information on two manifolds of two-mode Gaussian states , 2016, 1605.06524.

[19]  T Yamamoto,et al.  Displacement of Propagating Squeezed Microwave States. , 2016, Physical review letters.

[20]  Guang-Can Guo,et al.  Quantum illumination with photon-subtracted continuous-variable entanglement , 2014 .

[21]  G Brida,et al.  Experimental realization of quantum illumination. , 2013, Physical review letters.

[22]  Saikat Guha,et al.  Gaussian-state quantum-illumination receivers for target detection , 2009, 0911.0950.

[23]  S. Lloyd,et al.  Quantum illumination with Gaussian states. , 2008, Physical review letters.

[24]  S. Lloyd Enhanced Sensitivity of Photodetection via Quantum Illumination , 2008, Science.

[25]  Seth Lloyd,et al.  Computable bounds for the discrimination of Gaussian states , 2008, 0806.1625.

[26]  M. Paris Quantum estimation for quantum technology , 2008, 0804.2981.

[27]  E. Bagan,et al.  Quantum Chernoff bound as a measure of distinguishability between density matrices: Application to qubit and Gaussian states , 2007, 0708.2343.

[28]  K. Audenaert,et al.  Discriminating States: the quantum Chernoff bound. , 2006, Physical review letters.

[29]  Radim Filip,et al.  Measurement-induced continuous-variable quantum interactions , 2005 .

[30]  B. Hall Holomorphic Methods in Mathematical Physics , 1999, quant-ph/9912054.

[31]  Simón Peres-horodecki separability criterion for continuous variable systems , 1999, Physical review letters.

[32]  Andrew S. Lesniewski,et al.  Monotone Riemannian metrics and relative entropy on noncommutative probability spaces , 1998, math-ph/9808016.

[33]  D. Petz Monotone metrics on matrix spaces , 1996 .

[34]  Matteo G. A. Paris,et al.  Displacement operator by beam splitter , 1996 .

[35]  Rupp,et al.  Observation of parametric amplification and deamplification in a Josephson parametric amplifier. , 1989, Physical review. A, General physics.

[36]  T. Andô,et al.  Means of positive linear operators , 1980 .

[37]  H. Yuen Quantum detection and estimation theory , 1978, Proceedings of the IEEE.

[38]  H. Chernoff A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on the sum of Observations , 1952 .

[39]  L. Campbell An extended Čencov characterization of the information metric , 1986 .

[40]  M. M. Miller,et al.  Fundamentals of Quantum Optics , 1968 .