Euclidean-space measures of robotic joint failures

Robotic joint failures are directly characterized and measured in joint space. A locking failure, for example, is one for which a joint cannot move, and it gives an error equal to the desired value minus the locked value. This article extends the joint-space characterization to Euclidean space by measuring a failure's effect there. The approach is based on a primitive measure of point error that can be defined to be distance or path length. It is used to form comprehensive measures through weighted integration over Euclidean-space regions. For kinematically redundant manipulators, minimizing the measures can be used to induce failure tolerance by either reducing the likelihood of collision-induced damage before a failure or reducing end-effector error after a failure. Examples for both cases are given.

[1]  Anthony A. Maciejewski,et al.  A local measure of fault tolerance for kinematically redundant manipulators , 1996, IEEE Trans. Robotics Autom..

[2]  A. A. Maciejewski,et al.  Dexterity optimization of kinematically redundant manipulators in the presence of joint failures , 1994 .

[3]  A. Liegeois,et al.  Automatic supervisory control of the configuration and behavior of multi-body mechanisms , 1977 .

[4]  Charles A. Klein,et al.  Review of pseudoinverse control for use with kinematically redundant manipulators , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[5]  F. Park Distance Metrics on the Rigid-Body Motions with Applications to Mechanism Design , 1995 .

[6]  John T. Chladek,et al.  Fault-tolerant joint development for the Space Shuttle remote manipulator system: analysis and experiment , 1993, IEEE Trans. Robotics Autom..

[7]  Yung Ting,et al.  A control structure for fault-tolerant operation of robotic manipulators , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[8]  Homayoun Seraji,et al.  Configuration control of redundant manipulators: theory and implementation , 1989, IEEE Trans. Robotics Autom..

[9]  Roger W. Brockett,et al.  Kinematic Dexterity of Robotic Mechanisms , 1994, Int. J. Robotics Res..

[10]  John Baillieul,et al.  Kinematic programming alternatives for redundant manipulators , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[11]  Anthony A. Maciejewski Fault tolerant properties of kinematically redundant manipulators , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[12]  Joseph R. Cavallaro,et al.  A dynamic fault tolerance framework for remote robots , 1995, IEEE Trans. Robotics Autom..

[13]  R. Paul Robot manipulators : mathematics, programming, and control : the computer control of robot manipulators , 1981 .

[14]  David E. Orin,et al.  Efficient Dynamic Computer Simulation of Robotic Mechanisms , 1982 .

[15]  M. Jamshidi,et al.  Robot manipulator control for hazardous waste-handling applications , 1992, J. Field Robotics.

[16]  Christiaan J. J. Paredis,et al.  Kinematic design of fault tolerant manipulators , 1992 .

[17]  J. Duffy,et al.  On the Metrics of Rigid Body Displacements for Infinite and Finite Bodies , 1995 .

[18]  M. Leu,et al.  Analysis of Swept Volume via Lie Groups and Differential Equations , 1992 .

[19]  David E. Orin,et al.  Efficient Dynamic Computer Simulation of Robotic Mechanisms , 1982 .

[20]  Anthony A. Maciejewski,et al.  Fault tolerance for kinematically redundant manipulators: anticipating free-swinging joint failures , 1998, IEEE Trans. Robotics Autom..

[21]  Olav Egeland,et al.  Task-space tracking with redundant manipulators , 1987, IEEE Journal on Robotics and Automation.